
50 WILMOTT magazine

Christoph Bennemann
d-fine Ltd., Germany, e-mail: christoph.bennemann@d-fine.de
Mark W. Beinker 
d-fine Ltd., Germany, e-mail: mark.beinker@d-fine.de
Daniel Egloff
QuantCatalyst Inc., Switzerland, e-mail: daniel.egloff@quantcatalyst.com
Michael Gauckler 
QuantCatalyst Inc., Switzerland, e-mail: michael.gauckler@quantcatalyst.com

Teraflops for Games and 
Derivatives Pricing

puting to the next level. We analyze the pricing of equity basket options with a local
volatility model implemented on a GPU. Our performance gains are very impressive.

Keywords
Graphics processing units, high performance computing, cluster, grid, Monte-Carlo
simulation, basket options, local volatility, derivatives pricing, risk analytics. 

Abstract
Financial computing continuously demands higher computing performance, which
can no longer be accomplished by simply increasing clock speed. Cluster and grid in-
frastructures grow, their cost of ownership explodes. On the other hand, the latest
GPU (Graphics Processing Unit) boards show impressive performance metrics. This
leads to the questions if and how one can harness this power to bring financial com-

1 Introduction
Over the past twenty years, financial computing has emerged as a strate-
gic discipline for the finance industry, and as a financial sciences do-
main in its own right. Today it is probably one of the fastest growing
areas in scientific computing. This remarkable growth has been caused
by a continuous development of innovative financial products, a dra-
matic increase in volumes, and the requirement to process transactions
in ever shorter time frames.

Researchers and practitioners have developed a thorough under-
standing of the mechanics of the financial markets. The modern models
they have developed to price and hedge complex financial products are
computationally very demanding. Improved numerical schemes and
substantial computing power are indispensable. To supply such huge
amounts of processing power, the standard approach is to connect many
servers and desktop machines to clusters and grids. This approach has
been pioneered in academia and is now heavily used not only in the 

financial world but also in defence, engineering, life sciences, bio-tech-
nology and medicine, to name a few.

Because higher computing performance can no longer be accom-
plished with an increase in clock speed, clusters and grids must grow in
size. The resulting infrastructures are likely to hit new barriers, such as
bandwidth limitations, network latency, power consumption, cooling,
floor space and maintenance. A robust operation, which is a key require-
ment in any financial services environment, cannot be achieved without
paying attention to all of these issues. As a consequence, building and
managing traditional clusters and grids is costly.

To pack more processing power onto a single chip, the CPU semicon-
ductor industry has recently started moving to multi-core system de-
signs with two, four and more processor cores. The graphics hardware
manufacturing industry made this transition more than ten years ago.
For instance, NVIDIA released its first dual core chip as early as 1998.
Today, special processors on graphics cards bring realistic 3D real-time
visualization and high-definition video processing to the desktop. They



ecuted instructions in a work package is large compared to the number
of processors in the systems. Even if the cluster communicates over a
high-speed network, I/O bandwidth limitations and communication la-
tency require a large amount of processing to be done sequentially.
Consequently, the so-called “embarrassingly parallel” problems are best
suited for cluster computing.

When scaling up a cluster installation, we face new barriers.
Communication between nodes, in particular many-to-one or many-to-
many communication patterns, stress the network bandwidth. Expensive
high-performance network technology is required. Other critical issues
are power consumption, cooling, floor space and maintenance. The larg-
er the cluster the more critical becomes the overall reliability of the sys-
tem. The software must provide fault-tolerance mechanisms in order to
account for failure of nodes during calculations. To quantify the total cost
of ownership, all these issues must be taken into account. Isn’t it time to
shrink wrap clusters and make them small and energy efficient?

2.2 Graphics processing units

By now GPUs have matured from specialized graphics rendering devices
to general purpose computing resources. A modern GPU can to some ex-
tent be seen as a small miniaturized cluster being placed on a single
chip. Figure 1 depicts the components of GPU architectures. The GPU
works closely in conjunction with the CPU of the host, which sends code
and data to the GPU memory. A special hardware unit, which is compa-
rable to the master in the cluster setup, is responsible for the scheduling
of the threads on the thread processors. Threads executing in the same
block of thread processors can communicate through dedicated on-chip
shared memory. The global memory is used to communicate between all
executing threads and to synchronize them. Aggregation and transfer of
the result back to the host memory is also done through the global
memory of the GPU board.

^

TECHNICAL ARTICLE 1

have built-in remarkable general purpose computing capabilities for
data-parallel problems. These new commodity computer graphics chips,
also known as GPUs (Graphics Processing Units), are probably today’s
most powerful computational hardware on a per dollar scale.

In this article we investigate how we can harness this power for fi-
nancial computing. Several typical financial applications can be signifi-
cantly accelerated with specialized massively parallel algorithms
running on GPUs. We illustrate the capabilities of GPUs with an imple-
mentation of a market standard local volatility model and apply it to the
pricing of structured equity basket derivatives. Our pricing algorithms
run 25 to 50 times faster on a GPU than a serial implementation on a
high-end CPU. This enormous performance gain renders many of today’s
almost infeasible tasks possible, including real time pricing of path de-
pendent multi-asset options. We therefore believe that using GPUs in fi-
nancial computing will have a disruptive impact on the financial
services industry: already a single GPU provides a cheap and simple alter-
native to a smaller cluster or grid, it brings high performance computing
to traders’ and risk managers’ desks, and it excites financial product de-
velopment.

2 The Free Lunch is Over
The past decades were dominated by an increase in clock frequencies. We
all witnessed the transition from a few hundred MHz to the scale of GHz.
The continuous increase in clock frequency caused the CPU performance
to double every 18 to 24 months. Nowadays, the growth in frequency is
hitting physical limits such as heat dissipation, signal propagation, radi-
ation, and power consumption. To further increase computing perform-
ance, the industry is moving to aggregate systems. On the macroscopic
level we see a dramatic rise of cluster and grid infrastructures. On the mi-
croscopic level, the semi-conductor industry develops multi-core chips
with two and four cores, but also many-core processor units with even
hundreds of cores.

2.1 Clusters and grids

Clusters and grids are a popular technology to provide high computing
power. The aggregation of off-the-shelf commodity hardware to build a
system with a computational capacity which was previously only achiev-
able with a supercomputer is a compelling idea. It has proven of great use
in many applications. Some business functions of financial institutions
cannot be pursued without the help of hundreds of dedicated machines
filling entire floors in data centres.

With the paradigm shift to multi-core and many-core in view, we
must see today’s clusters as a machine of moderate parallelism. The most
common computation model on a cluster is a master-slave setup imple-
mented with a networking middleware, such as the Message Passing
Interface (MPI). The master manages work packages, which are sent to the
slaves for processing. A slave operates on a single machine, or even on a
single core, and executes the instruction sequentially. Upon completion
it sends the results back to the master, where all results are aggregated.
The processors in a cluster can communicate only at relatively low speed.
Therefore, the approach works very well if the number of sequentially ex-

WILMOTT magazine 51

Thread Processor

Parallel
Data
Cache

Parallel
Data
Cache

Thread Processor

Parallel
Data
Cache

Parallel
Data
Cache

Thread Processor

Parallel
Data
Cache

Parallel
Data
Cache

Thread Processor

Parallel
Data
Cache

Parallel
Data
Cache

Thread Execution Manager

Global Memory

Host

Figure 1: Schematics of the NVIDA GPU architecture.



52 WILMOTT magazine

The concept of threads is well-known in parallel programming. They
are sections of a program which are executed concurrently with others.
The difference between classical multi-threading programming on a CPU
and parallel programming on a GPU is the number of threads which are
spawned and the cost for context switching between threads. On a GPU,
in order to provide work for hundreds of cores, we require tens of thou-
sands of threads. Context switching between threads is implemented at
the hardware level. It has virtually no overhead and can happen even be-
tween two instructions. The key advantage of such an execution model is
its capability to hide the latency occurring from global memory access.
Once a data transfer from memory to the arithmetic logic unit is initiat-
ed, another thread can continue executing immediately while the data is
being moved and the former thread waits for its arrival. Such an execu-
tion model allows many transistors to be dedicated to arithmetic logical
units, instead of using them for cache as in the classical CPU design.
Assuming the same number of transistors, the GPU architecture features
more arithmetic units than the corresponding CPU. The floor plans in
Figure 2 illustrate this best.

2.3 CPUs and GPUs compared

The latest GPU boards have very impressive performance metrics. For in-
stance, the NVIDIA Tesla C870 has a memory bandwidth of 76.8 GB per
second and 512 GFLOPS peak performance of which 430 GFLOPS are
achievable. This has to be compared with a 20 GB per second memory
bandwidth and 81 GFLOPS achievable on a Quad-Core Intel Xeon E5472
processor (3.00 GHz, 2x6 MB L2 cache, 1600MHz FSB), see Intel (2008).

Advances in fabrication technology increase at the same rate for both
platforms. The above disparity in performance originates in the funda-
mental architectural differences. The latest GPUs and CPUs have compa-
rable numbers of transistors; the Intel Xeon series 5400 has 820 million,
the upcoming GPU of NVIDIA has over 1 billion. CPUs are optimized for
sequential code. Many transistors are dedicated for branch prediction,
out-of-order execution, and a significant amount to the L2 cache. The
data-parallel design of a GPU uses only small caches and devotes the ma-
jority of transistors to computation, see Figure 2. We conclude that the
two architectures are suited to execute different kinds of code.

2.4 How serious is GPU computing?

Is serious financial computing on gaming hardware possible at all, or is
this hardware solely there for entertainment? All the leading GPU manu-
facturers, including ATI and NVIDIA, have realized the need for serious

GPU computing and launched specialized product lines for these market
segments. The product lines are built for serious computing and feature
enterprise level support, guarantees and availability, rack mountable
cases and are compatible with all major operating systems. The GPU itself
is not over-clocked and their boards do not have – somewhat counter in-
tuitively, but in view of the above consistently – connectors for displays.

One point which is often criticized is lacking support for double-pre-
cision arithmetic. Even though not all algorithms require double preci-
sion, chip makers cannot discount this industry request. In order to
address it, NVIDIA will manufacture a double-precision GPU, which, at
the time of writing this article, has already been made available as a de-
veloper edition. This strategy ensures that current software libraries will
support the new hardware by the time it becomes available publicly. The
finance industry can also inherit new features from the gaming industry,
which are unavailable in current CPU and memory architectures. One
such feature is the texture memory which we used intensively for our
local volatility model implementation in section 4. Finally, being linked
to the entertainment industry is no bad thing at all: with about 15 mil-
lions units sold monthly by NVIDIA alone, a steady flow of investment
and economies of scales are guaranteed.

2.5 Future-high performance infrastructures

For small to medium sized problems, a single GPU can replace a cluster
of dozens of CPUs and therefore make a cluster obsolete. For larger prob-
lems one will most likely see a symbiosis. Clusters of CPUs will first parti-
tion the problem on a coarse grained level and let GPUs attached to
compute nodes process the highly parallel sub-problems. Hardware ven-
dors already offer special rack versions to support hybrid clusters. For in-
stance the NVIDIA’s Tesla 1U computing system with four GPUs (512 cores
in total) can sustain more than 1.2 TFLOPS, packed in a standard 19” 1U
rack-mount chassis. It can be expected that GPU installations will become
ubiquitous in any larger data center. GPUs will also find their niche in
ecological high-performance computing systems. For instance the power
consumption of a Tesla 1U computing system is as low as 550W to 800W.

3 Efficiently Programming Modern GPUs
In the early days of GPU programming one had to trick the GPU into a
general-purpose computing device by casting the problem as a graphics
operation and program the various elements in the graphics rendering
pipeline. The highly constrained memory layout and access model hin-
dered a broad application of these devices and made the programming
for non-graphics experts hard and time consuming.

Fortunately, the new GPU generation is based on a fully general data-
parallel architecture. Moreover, NVIDIA released a new hardware and
software architecture, named CUDA. It is specifically designed for issuing
and managing computations on the GPU as a data-parallel computing de-
vice without the need of mapping them to a graphics API. CUDA is a pro-
gramming model. The GPU is viewed as a computing device capable of
executing a very high number of threads in parallel. It operates as a co-
processor to the main CPU and any data-parallel, computing-intensive
part of an algorithm can be delegated to the device.

CPU GPU

Control

Cache

DRAM DRAM

ALU ALU

ALU ALU

Figure 2: CPU and GPU architectures compared.



^

WILMOTT magazine 53

The best performance on a GPU is achieved if many threads execute
the same code on different data, in a single instruction multiple data
(SIMD) fashion. Memory access to local shared memory, through the
local parallel data cache (constant and texture memory) and well aligned
access to global memory are particularly fast. Taking care of proper mem-
ory access results in programs that can achieve a large fraction of the the-
oretical peak memory bandwidth which is in the order of 100 GB per
second for today’s GPU boards. The GPU will achieve best performance for
algorithms that contain a high degree of data parallelism and problem
sizes that fit into the memory of the GPU board which is currently be-
tween one and four GB.

4 Local Volatility Model on GPU
Based on the PricingCatalystTM framework, QuantCatalyst Inc (2008),
which allows an efficient implementation of pricing algorithms on GPU
without going through the steep learning curve of GPU programming,
we implemented the pricing of complex equity basket options with dif-
ferent barrier and payoff types. We chose a local volatility model for every
underlying asset and constant correlations between them. Local volatili-
ty models as introduced by Dupire (1994) and Derman and Kani (1994)
are very popular among practitioners. They provide a relatively straight-
forward approach to price exotic options consistently with the volatility
smile. Because local volatility models can fit the entire implied volatility
surface, traders use it also to hedge exotic options with the underlying
stocks and the vanilla options markets, even though the model does not
properly capture the true market behaviour. As analyzed in Engelmann,
Fengler and Schwendner (2006) the hedging performance can be  consid-
erably improved if one hedges against the movements of the implied
volatility surface.

The computationally challenging parts of the valuation are the
Monte Carlo simulation of the local volatility process and the payoff eval-
uation along the paths. The calibration of the local volatility surfaces, for
instance along the lines of Andersen and Brotherton-Ratcliffe (1997), also
merits GPU acceleration. It has to be executed once for every underlying
asset of the basket. If Greeks have to be calculated as well, we need to re-
compute the local volatility surfaces several times to implement a sticky
strike or sticky moneyness calibration.

Our implementation takes advantage of the texture memory provid-
ed by the GPU. Texture memory is accessible as a one, two or three-
dimensional lookup table, with interpolation between the nodes realized
in hardware. In Figure 3 the bilinear interpolation is depicted. Assuming
the texture map to be defined on an integer lattice, the expression

f (u, v) = (1 − α)(1 − β)f [floor(u), floor(v)] + α(1 − β)f [ceil(u), floor(v)]

+(1 − α)β f [floor(u), ceil(v)] + αβ f [ceil(u), ceil(v)]

interpolates for arbitrary real coordinates u, v, where α and β are the
fractional parts of the coordinates. This formula is implemented on the
hardware level within the texture addressing unit. What would corre-
spond to four separate memory fetches and several integer and floating
point operations on a normal architecture happens on the GPU at the
speed of a single memory access.

When simulating from a local volatility model, the local volatility is a
function of time to maturity and stock value. The function is constant
during the sampling of the paths and an interpolation in both dimen-
sions is sensible. Using the texture memory of the GPU for the local
volatility mapping speeds up the simulation by orders of magnitude
compared to an explicit interpolation procedure. When it comes to the
implementation of interest rate models, note that texture memory can
also handle three-dimensional structures and is therefore a perfect tool
to represent the swaption volatility cube.

The timings in Figure 4 show the price calculation with Monte-Carlo
simulations of 10’000 samples on a single GPU. The paths are modelled as
correlated Brownian motions which have local volatility. These are simu-
lated on a time grid with daily resolution over a period of one year. The
local volatility function is stored in texture memory with a resolution of
100 values in each dimension. Dividends are possible at each time step
without affecting the performance. All our examined payoffs are path-de-
pendent. The worst-of instrument pays the nominal in case none of the
equities ever hits its barrier or all of the equities quote above the initial
value at maturity. If any of the barriers is hit, the stock with the worst rel-
ative performance is delivered instead of the nominal. A coupon is paid
in any case. The worst-of with the auto-callable feature has additional
upper barriers for each of the equities. If all equities of the basket quote
at 105% of their initial value, the nominal and the coupon are paid back
immediately. This requires additional checks along the paths and daily
monitoring.

Pricing of baskets with three or four equities takes less than 20ms. The
runtime increases with increasing basket size. Due to memory alignment
the runtime increases step-wise in buckets of four. Pricing baskets of up to
eight equities takes between 32ms and 37ms. Baskets of 9 and 10 equities
can be priced in 45ms. Comparing the execution times of the two payoff
types suggests that path generation is more costly in terms of computing
power than path evaluation and that therefore even more complicated
payoff structures can be priced with only a minor increase in runtime.
The pricing algorithms run 25 to 50 times faster on a GPU than on a high-
end CPU, depending on the complexity of the payoff, the basket size, and
the number of simulations. To provide a fair comparison we used Intel’s
Math Kernel Library to generate the random numbers. By just comparing

^

TECHNICAL ARTICLE 1

f(u,v)

u

v

u1
v1

f(u1,v1)

1
1

0 0
f(0,1)f(1,0)

f(1,1)

f(0,0)

Figure 3: Bilinear Texture Interpolation.



TECHNICAL ARTICLE 1

W

54 WILMOTT magazine

the peak performance of a GPU and a high-end CPU we would not antici-
pate such an enormous performance gain. It can only be justified by the
distinct architectures which allow fundamentally different program-
ming models. The GPU design is so much better capable to cope with
data-parallel problems. Additional features like texture memory and
hardware interpolation increase the GPU efficiency further.

5 Conclusions
We may ask the question if GPUs are just another trendy fashion or if they
will cause a real breakthrough in financial computing. Let us assume that
you want to price complex derivatives on the basis of a sophisticated
model. A speedup of a factor of two to five is an incremental change. It can
be achieved with a relatively minor effort. For instance changing the com-
piler might already do the job. One waits a little less or increases accuracy
slightly. To make your pricing requests five to ten times faster already re-
quires a substantial effort. You need to optimize your code, switch to a
higher performing numerical scheme, or in the worst case you might
need to install ten times more computing nodes. Pricing routines that
took a few seconds are now done at real time, or you can process signifi-
cantly larger volumes. However, it does not fundamentally change the
way you do business. Things change fundamentally if the calculation
speed becomes 50 to 100 times faster. In this case a disruptive change is
likely to happen. For such a change you might be willing to buy new 
infrastructure, rewrite entire applications and think about new work
flows, products and services. You spin new innovations, for instance:

• Prices and Greeks of complex structured products are available in
real-time, instead of delayed by minutes. Agile movements and mar-
ket making of complex structured products would be possible when
the markets play rough.

• Interactive structuring of multi-asset barrier options, with barrier
and strike levels set to meet the investor’s risk profile can attract new
clients.

• On a hybrid CPU/GPU cluster you can refine your risk analysis.
Nested Monte-Carlo for a full revaluation risk calculation is in reach
if performance demanding pricing algorithms are implemented to
run on GPU acceleration boards.

It is now up to traders, practitioners, and researchers to exploit the ca-
pabilities and advantages of the new GPU acceleration boards. We believe
they have the potential to significantly push the limits of computational
finance and to create interesting new business opportunities for the 
financial services industry.

50

40

30

20

10

0
5 6 7 8 9 104

E
xe

cu
tio

n 
T

im
e 

(m
s)

Basket Size

Worst-of barrier reverse convertible

Worst-of barrier reverse convertible auto callable

Figure 4: Timings.

FOOTNOTES & REFERENCES

Christoph Bennemann and Mark Beinker are senior manager and partner, 
respectively, at d-fine, the consulting firm. Daniel Egloff and Michael Gauckler are
managing directors and founding partners of QuantCatalyst, a software company 
specialising in cluster and GPU solutions for the finance industry.

Inquiries regarding this work should be directed to Daniel Egloff 
(daniel.egloff@quantcatalyst.com)

Andersen, L. B. G. and Brotherton-Ratcliffe, R.: 1997, The equity option volatility smile: 
An implicit finite-difference approach, Journal of Computational Finance 1(2), 5–37.
Derman, E. and Kani, I.: 1994, Riding on a smile, Risk 777    (2), 32–39.
Dupire, B.: 1994, Pricing with a smile, Risk 7(1), 18–20.
Engelmann, B., Fengler, M. and Schwendner, P.: 2006, Better than its reputation: 
An empirical hedging analysis of the local volatility model for barrier options, Technical 
report, Sal. Oppenheim jr. & Cie., Frankfurt, Germany.
Intel: 2008, Intel® Xeon® E5472 processor, Specification, http://www.intel.com/
performance/server/xeon/hpcapp.htm.
NVIDIA: 2007, CUDA™ Compute Unified Device Architecture Programming Guide,
Technical Report 1.1, NVIDIA® Corporation http://www.nvidia.com/object/
cuda_home.html.
NVIDIA: 2008, NVIDIA® Tesla™ C870, Specification, http://www.nvidia.com/object/
tesla_c870.html.
QuantCatalyst Inc.: 2008, PricingCatalystTM, Software documentation, http://www.
QuantCatalyst.com/.


