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FINFORMATICS

Rootless Vol

E
ven if you started out clueless about the volatility σ , given a 
good enough measuring stick and fast enough hands you 
ought to be able to measure it quickly and accurately. In 
practice you have to settle for wobbly estimation. Less wobbly
than estimation of the mean µ. But a whole lot wobblier than
you’d like.

Let me quickly review the problem. Suppose we observe Brownian mo-
tion for a short period �t. The observation �x equals µ�t + σε

√
�t for

some noisy Gaussian ε with mean 0 and variance 1. If we square �x and di-
vide by �t we obtain

(�x)2

�t
= µ2�t + µσ ε

√
�t + σ 2ε2

which has expected value σ 2 + µ2�t and variance 2σ 4 + µ2σ 2�t. To refine
our estimate further, let’s divide the original period into N non-overlap-
ping intervals, not necessarily of equal length, and average the measure-
ments (�xi)

2/�ti . The average has expectation

E

[
1

N

n∑
i=1

(�xi)
2

�ti

]
= σ 2 + µ2

N

n∑
i=1

�ti = σ 2 + µ2 �t

N

and variance – thanks to the Brownian assumption of independence across
non-overlapping time intervals – of

Var

[
1

N

n∑
i=1

(�xi)
2

�ti

]
= 2σ 4

N
+ µ2σ 2

N2

n∑
i=1

�ti = 2σ 4

N
+ µ2σ 2 �t

N2

As N approaches infinity, both the bias and the variance vanish, leaving
the average infinitesimally close to the true mean σ 2. And this is regardless
of the total observation length �t. So it’s child’s play for an armchair theo-
rist to get 99 per cent confident within a second of a range less than one
per cent wide around the true variance. He just needs to imagine a measly
million observations in a second.

You’re not impressed? Well, you should be. The empirical rate of drift
�x/�t will have mean µ with variance σ 2/�t. So you have an unbiased
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mean but the variance approaches zero as �t shrinks. Subdividing the
interval into N parts won’t help. Your best estimator always works out to
�x/�t with variance σ 2/�t so you might as well save the extra slicing.

The only way to identify µ is to wait. And in finance you might have
to wait a long while. For example, suppose you proxy the Sharpe ratio
µ/σ by the empirical Sharpe �x/σ�t. The standard deviation of the lat-
ter is one. So to get 99 per cent confident that the empirical annualized
Sharpe is within 0.5 of its true value you would need over 25 years of
data. Relevant data that is, when the drift was just what it is now. Good
luck.

Deviously Standard Estimators
In practice σ is indeed much easier to estimate than µ. It is an estimate
though and not an asymptotically precise measure. Why not? One explana-
tion which surely is true is that our measuring sticks won’t let us. Between
discrete quantization of values, bid/ask spreads, and variations in effective
trading time, both our (�x)2 and �t measures have errors that don’t scale
down proportionally to means. The second explanation, which probably is
true too, is that at the core level the underlying processes aren’t Brownian:
they’re serially correlated and riddled with jumps.

So what do we do? The standard way is to measure a lot of (�x)2/�t
values for N small equal-length intervals �t and average them together.
To get fancier, subtract off the sample mean before squaring and multi-
ply the average by N

N−1 . To estimate σ take the square root of the estimate
for σ 2 .

Ideally you want to take lots of these estimates, down to the limits of
granularity, and update them every new measurement. This leads to the
standard EWA (exponentially weighted average) method of estimating
volatility. Suppose we seed a variance estimator σ̂ 2 in some fashion
Defining y ≡ �x−µ� t√

�t
and using the lag operator L to denote the lagged

value of a variable, let us update the variance estimator as follows: 

σ̂ 2 = λ(y2 − Lσ̂ 2) + Lσ̂ 2

σ̂ =
√

σ̂ 2

One of the strangest features of Brownian motion is that the parameter that causes
all the uncertainty is not supposed to be uncertain...



^

for some nudge factor λ < 1. This implies weights of  λ(1 − λ)n on an obser-
vation lagged n periods, which approximates exponential decay if stretched
ad infinitum.

The higher λ, the more you weight the most recent observations. Note
that the duration D satisfies the recursion

D = λ(0 − (D + 1)) + D + 1

which implies λ = 1
D+1 . A rectangular (equally weighted) series of N observa-

tions would have duration D = N−1
2 . The two series will have equal dura-

tions if λ = 2
N+1 . Above I have graphed Monte Carlo simulations of volatility

estimation for a standard Gaussian series. The rectangular and EWA estima-
tors, each with 65 days’ duration, track each other reasonably well though
not perfectly.

This EWA updating rule is the basic workhorse of most industrial-
strength vol estimation. It’s easy to understand and simple to apply.
However, there are a few problems with it.

• It’s annoying to keep squaring and taking the square root each time,
when in most cases the new square root doesn’t differ that much
from the old. 

• The updating rule tends to overreact to dirty data. A 10 standard devi-
ation outlier will typically more than double the vol estimate, when
on balance it would be better to ignore it.

• It’s hard to justify this rule theoretically.

Recall from previous Finformatics columns that an EWA can be viewed as a
reduced form of the appropriate Bayesian updating rule if both observa-
tions and beliefs are normally distributed with fixed variances. But the var-
ious y2 aren’t normally distributed. They’re distributed much closer to
chi-squared, which is much higher-skew and higher-kurtosis even before
you add dirty data. An optimal updating rule ought to trim the nudge fac-
tor λ as y2 rises. No wonder the measure is so sensitive to outliers.

EWA Updating Without Square Roots
In searching for alternative vol estimators, let’s start by getting rid of the
square root. Combining the two updating parts into one and applying some
algebra:

σ̂ =
√

σ̂ 2 =
√

λ(y2 − Lσ̂ 2) + Lσ̂ 2 = Lσ̂

√
1 + λ

(
y2

Lσ̂ 2
− 1

)

∼= Lσ̂

(
1 + 1/2λ

(
y2

Lσ̂ 2
− 1

))
= Lσ̂ + 1/2λ

(
y2

Lσ̂
− Lσ̂

)

where the approximation follows from the first-order Taylor expansion√
1 + δ ∼= 1 + 1/2δ .

Below I’ve graphed another Monte Carlo simulation. You’ll see that the
two EWA versions are very close. There’s no need to take the square root. 

However, the Taylor approximation doesn’t reduce the sensitivity to
large outliers. Indeed it slightly exacerbates it. For example, if the estimated
variance doubles, the square root rises 42 per cent whereas the linear ap-
proximation would up the volatility estimate 50 per cent. 

Taking a second-order Taylor approximation runs the risk of generating
negative vols. A Pade(1,1) approximation to the square root works better. It
approximates 

√
1 + δ by 1 + 2δ

4+δ
, eg 1.4 for 

√
2. It also has the mathemati-

cally false but empirically appealing implication that the vol can never
triple. Hence for an σ̂ estimator much more robust to extremes than the
standard EWA, update as:

σ̂ =
(

1 + 2δ

4 + δ

)
Lσ̂ for δ = λ

(
y2

Lσ̂
− 1

)

Vol Estimation Using Absolute Deviations
The previous estimators remain sensitive to outliers, outliers that the 
observations y2 are all too prone to create. Can we not transform the 
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observations to make them more normal? An obvious candidate is to take
the square root of the square, that is, the absolute value of y. If y is
Gaussian, |y| will have skew 0.995 and kurtosis 0.87, whereas y2 has a skew
of 2.83 and kurtosis of 12. 

Since the mean of a Gaussian |y| will be σ
√

2
π

∼= 0.7979σ , we need to
multiply the observed |y| by 1.2533 to produce an unbiased estimator of σ .
This suggests an EWA of the form:

σABS = LσABS + λ(1.2533 |y| − LσABS )

Below is a Monte Carlo simulation for two EWAs, each with 65 days’ dura-
tion but one based on squares and the other on absolute deviations. They
track each other closely except for large deviations where the absolute de-
viation-based vol is more stable. This is exactly what you’d expect. A four-
standard deviation event will up σABS by a fraction (1.2533 ∗ 4 − 1)λ ∼= 4λ

but up σ̂ by (4 ∗ 4 − 1)λ = 15λ. 
To make the absolute deviation-based EWA more robust to large out-

liers, one can cap |y| at say 4 times the current standard deviation, creating
something like this:

σABS =
(

1 + λ min

(
4,

1.2533 |y|
LσABS

− 1

))
LσABS

Biases from Using EWAs
Let me caution that σABS is an unbiased estimator of vol only when devia-
tions are normal. For fat-tailed distributions it will understate vol. How
much? To get a better sense of the size of the effect, let’s assume the proba-
bility distribution can be approximated by a mixture of two normal densi-
ties centered on µ. Note this rules out skewness. The first density, which

applies ν times as frequently as the other, is assumed to have variance
(1 − η)σ 2 for some η between zero and one. For the total variance to equal
σ 2, the other density must have variance (1 + νη)σ 2 . To generate a kurtosis
of K, we must have

3 + K = 3(1 − η)2ν + 3(1 + νη)2

ν + 1

= 3ν − 6ην + η2ν + 3 + 6νη + 3ν2η2

ν + 1

= 3 + 3νη2

Hence νδ2 = 1/3K , implying 

E[1.2533 |y|] = ν
√

1 − η + √
1 + νη

1 + ν
σ

∼= ν(1 − 1/2η − 1/8η2) + (1 + 1/2νη − 1/8ν2η2)

1 + ν

= 1 − 1

8
νη2

= 1 − K

24
� 1 − 0.0417K

So the understatement grows with kurtosis.
The square-based σ̂ is not an unbiased estimator of σ either, only for a

different reason. Given any unbiased but wobbly estimator s of σ , s2 must
tend to overstate σ 2 while 1/s will tend to understate 1/σ . This follows from
Jensen’s inequality, a notion known to every options trader as “positive
convexity is good’’. If you take second-order Taylor approximations and
work thru the implications, you will find that σ̂ tends to overstate σ by a
factor of 

(
1+1/2K

4

)
λ. At least I hope you will.

Vol Estimation Using Signs
For even more robust estimation we can simply monitor whether a given
observation exceeds a specified fraction of the current vol estimate. For ex-
ample, with normality y has even odds of falling within 0.6745 standard de-
viations of the mean. Suppose we use the updating rule

σSIGN = (1 + 0.72λ ∗ Sign(|y| − 0.6944LσSIGN ))LσSIGN

I scaled λ by the factor 0.72 to ensure that the standard deviation of
changes was comparable to previous measures. 

As constructed, the nudge has a sub-normal kurtosis of −2. A variant
that has zero mean and zero kurtosis under normality of y is 

σSIGN = (1 + 0.72λ ∗ if (|y| > 1.25LσSIGN , +0.79. − 0.21)) LσSIGN

Here is a chart of Monte Carlo simulations under normality. The sign meas-
ure tracks better than you might expect. It’s noisier with respect to small
deviations and less responsive to regime change but on the other hand
more robust to big outliers.

Figure 3: 
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Rootless Range Estimators of Vol
These aren’t the only ways to estimate volatility without taking square
roots. One appealing method is to use 1

2
√

ln 2
∼= 60% of the day’s trading

range. It’s much more precise than the daily close though you may need to
calibrate the multiplier to mitigate real-word distortions. A measure based
on 84% of the range less 39% of the absolute return is even more precise

though again you’ll need to calibrate. In Monte Carlo simulations I have
found it more precise than the better-known Garman-Klass estimators
using square roots. 

Regime Switching Across Vol Estimators
It’s rarely clear which type of vol estimator we should choose or at what du-
ration. Fortunately we don’t need to. We can take a belief-weighted average
of vol predictors to use as a consensus, and set up regime-switching models
to update beliefs. It’s not perfect because we won’t know the meta-parame-
ters that define the switching rates. Fortunately it needn’t be perfect to be
useful. A simple average of short-term and long-term EWAs of the same type
often outperforms substantially more complicated GARCH models. By toss-
ing in more types and allow the averages to dynamically update, you can
improve on this. However you should also allow persistently weaker models
to prune themselves out.

Regime switching methods can also be useful in calibrating transforms
of vol. One such transform is the inverse vol. It tells us how much of an asset
or portfolio we need to generate unit volatility. Only not quite. By Jensen’s
equality again, an asset sized by its estimated inverse vol will tend to aver-
age a vol greater than one. Concretely,

E

[
y

σest

]
= E

[
y

σ (1 ± ε)

]
∼= E

[ y

σ

]
· E

[
1 ∓ ε + ε2

] = 1 + var [ε]

Instead of estimating variance from first principles it may be substantially
easier to decide the correction empirically, again using an overlay of EWAs.

Figure 4:
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