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Abstract
A previous paper (West 2005) tackled the issue of calculating accurate uni-, bi- and
trivariate normal probabilities. This has important applications in the pricing of multi-
asset options, e.g. rainbow options. In this paper, we derive the Black—Scholes prices of
several styles of (multi-asset) rainbow options using change-of-numeraire machinery.
Hedging issues and deviations from the Black-Scholes pricing model are also briefly
considered.

1. Definition of a Rainbow Option
Rainbow Options refer to all options whose payoff depends on more
than one underlying risky asset; each asset is referred to as a colour of
the rainbow. Examples of these include:

• “Best of assets or cash” option, delivering the maximum of two risky
assets and cash at expiry (Stulz 1982), (Johnson 1987), (Rubinstein
1991)

• “Call on max” option, giving the holder the right to purchase the max-
imum asset at the strike price at expriry, (Stulz 1982), (Johnson 1987)

• “Call on min” option, giving the holder the right to purchase the
minimum asset at the strike price at expiry (Stulz 1982), (Johnson
1987) 

• “Put on max” option, giving the holder the right to sell the maxi-
mum of the risky assets at the strike price at expiry, (Margrabe
1978), (Stulz 1982), (Johnson 1987) 

• “Put on min” option, giving the holder the right to sell the minimum
of the risky assets at the strike at expiry (Stulz 1982), (Johnson 1987)

• “Put 2 and call 1”, an exchange option to put a predefined risky
asset and call the other risky asset, (Margrabe 1978). Thus, asset 1 is
called with the ‘strike’ being asset 2.

Thus, the payoffs at expiry for rainbow European options are:

Best of assets or cash max(S1, S2, . . . , Sn, K)

Call on max max(max(S1, S2, . . . , Sn) − K, 0)

Call on min max(min(S1, S2, . . . , Sn) − K, 0)

Put on max max(K − max(S1, S2, . . . , Sn), 0)

Put on min max(K − min(S1, S2, . . . , Sn), 0)

Put 2 and Call 1 max(S1 − S2, 0)

To be true to history, we deal with the last case first.

2. Notation and Setting
Define the following variables:

• Si = Spot price of asset i,
• K = Strike price of the rainbow option,



currency. The risk free rate in this market is q2. Thus we have the option
to buy asset one for a strike of 1. This has a Black-Scholes price of

V = S1

S2
e−q1 τ N(d+) − e−q2 τ N(d−)
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ln
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S2

1
+

(
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2
σ 2

)
τ

σ
√

τ

where σ is the volatility of S1

S2
. To get from a price in the new asset 2 cur-

rency to a price in the original economy, we multiply by S2: the ‘exchange
rate’, which gives us (2).

So, what is σ ? We show that (5) is the correct answer to this question
in §4.

4. Change of Numeraire
Suppose that X is a European—style derivative with expiry date T. Since
(Harrison & Pliska 1981) it has been known that if X can be perfectly
hedged (i.e. if there is a self—financing portfolio of underlying instruments
which perfectly replicates the payoff of the derivative at expiry), then the
time—t value of the derivative is given by the following risk—neutral valua-
tion formula:

Xt = e−r(T−t)
E

Q
t [XT ]

where r is the riskless rate, and the symbol EQ
t denotes the expectation at

time t under a risk—neutral measure Q. A measure Q is said to be risk—neutral
if all discounted asset prices S̄t = e−rtSt are martingales under the measure
Q, i.e. if the expected value of each S̄t at an earlier time u is its current
value S̄u :

E
Q
u [S̄t ] = S̄u whenever 0 ≤ u ≤ t

(Here we assume for the moment that S pays no dividends.)
Now let At = ert denote the bank account. Then the above can be

rewritten as

Xt

At
= E

Q
t

[
XT

AT

]
i.e. X̄t = E

Q
t

[
X̄T

]

Thus X̄t is a Q–martingale.
In an important paper, (Geman, El Karoui & Rochet 1995) it was

shown that there is “nothing special” about the bank account: given an
asset (1995) Â, we can “discount” each underlying asset using Â:

Ŝt = St

Ât

Thus Ŝ is the “price” of S measured not in money, but in units of Â.
The asset Â is referred to as a numéraire, and might be a portfolio or a de-
rivative—the only restriction is that its value Ât is strictly positive during
the time period under consideration.

It can be shown (cf. (Geman, et al. 1995)) that in the absence of arbi-
trage, and modulo some technical conditions, there is for each numéraire
(1995) Â a measure Q̂ with the property that each numéraire—deflated
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• σi = volatilityof asset i,
• qi = dividend yield of asset i,
• ρij = correlation coefficient of return on assets i and j,
• r = the risk-free rate (NACC),
• τ = the term to expiry of the rainbow option.

Our system for the asset dynamics will be

dS/S = (r − q)dt + A dW (1)

where the Brownian motions are independent. A is a square root of the
covariance matrix �, that is AA′ = � . As such, A is not uniquely deter-
mined, but it would be typical to take A to be the Choleski decomposition
matrix of � (that is, A is lower triangular). Under such a condition, A is
uniquely determined.

Let the ith row of A be ai . We will say that ai is the volatility vector for
asset Si . Note that if we were to write things where Si had a single volatil-
ity σi then σ 2

i = ∑n
j=1 a2

ij , so σ i = ‖a i‖, where the norm is the usual
Euclidean norm. Also, the correlation between the returns of Si and Sj is
given by 

a
i
·a

j

‖a
i
‖‖a

j
‖ .

3. The Result of Margrabe
The theory of rainbow options starts with (Margrabe 1978) and has its
most significant other development in (Stulz 1982).

(Margrabe 1978) began by evaluating the option to exchange one asset
for the other at expiry. This is justifiably one of the most famous early op-
tion pricing papers. This is conceptually like a call on the asset we are
going to receive, but where the strike is itself stochastic, and is in fact the
second asset. The payoff at expiry for this European option is:

max(S1 − S2, 0),

which can be valued as:

VM = S1e−q1 τ N(d+) − S2e−q2 τ N(d−), (2)

where

d± =
ln

f1

f2
± 1

2
σ 2τ

σ
√

τ
(3)

fi = Sie
(r−qi)τ (4)

σ 2 = σ 2
1 + σ 2

2 − 2ρσ1σ2 (5)

Margrabe derives this formula by developing and then solving a
Black-Scholes type differential equation. But he also gives another argu-
ment, which he credits to Stephen Ross, which with the hindsight of
modern technology, would be considered to be the most appropriate ap-
proach to the problem. Let asset 2 be the numeraire in the market. In
other words, asset 2 forms a new currency, and asset one costs S1

S2
in that
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asset price process Ŝt is a Q̂—martingale, i.e. 

E
Q̂
u [Ŝt ] = Ŝu whenever 0 ≤ u ≤ t

(Again, we assume that S pays no dividends.) We call Q̂ the equivalent
martingale measure (EMM) associated with the numéraire Â. It then follows
easily that if a European—style derivative X can be perfectly hedged, then

X̂t = E
Q̂
t [X̂T ] and so Xt = ÂtE

Q̂
t

[
XT

ÂT

]

Indeed, if Vt is the value of a replicating portfolio, then (1) Xt = Vt by
the law of one price, and (2) V̂t = Vt

Ât
is a Q̂—martingale. Thus 

X̂t = V̂t = E
Q̂
t

[
V̂T

]
= E

Q̂
t

[
X̂T

]

using the fact that VT = XT —by definition of “replicating portfolio”.
It follows that if N1, N2 are numéraires, with associated EMM’s Q1, Q2,

then 

N1(t)E
Q1

t

[
XT

N1(T)

]
= N2(t)E

Q2

t

[
XT

N2(T)

]

Indeed, both sides of the above equation are equal to the time—t price
of the derivative.

To get slightly more technical, the EMM Q̂ associated with numéraire
Â is obtained from the risk—neutral measure Q via a Girsanov transforma-
tion (whose kernel is the volatility vector of the numéraire). In particular,
the volatility vectors of all assets are the same under both Q and Q̂.

A minor modification of the above reasoning is necessary in case the
assets pay dividends. Suppose that S is a share with dividend yield q. If we
buy one share at time t = 0, and if we reinvest the dividends in the share,
we will have eqt shares at time t, with value S(t)eqt . If  Â is the new
numéraire, with dividend yield q̂, then it is the ratio

S(t)eqt

Â(t)eq̂t

that is a Q̂—martingale, and not the ratio S(t)

Â(t)
.

Suppose now that we have n assets S1, S2, . . . , Sn , and that we model
the asset dynamics using an n—dimensional standard Brownian motion.
If a i is the volatility vector of Si, then, under the risk—neutral measure Q,
the dynamics of Si are given by

dSi

Si
= (r − qi) dt + a i · dW

where qi is the dividend yield of Si, and W is an n—dimensional standard
Q—Brownian motion. When we work with asset Sj as numéraire, we will
be interested in the dynamics of the asset ratio processes

Si/j(t) = Si(t)

Sj(t)

under the associated EMM Q j. Now by Ito’s formula the risk—neutral dynam-
ics of Si/j are given by

dSi/j

Si/j
=

(
q j − qi + ‖a j‖2 − a i · a j

)
dt + (ai − a j) · dW

However, when we change to measure Qj,  we know that Y(t) = Si/j(t)
e(qi−q j)t is a Q j—martingale. Applying Ito’s formula again,  we see that the
risk—neutral dynamics of Yt are given by

dY

Y
=

(
‖a j‖2 − a i · a j

)
dt + (a i − a j) · dW

Since Y(t) is a Qj—martingale, its drift under Qj is zero, and its volatil-
ity remains unchanged. Thus the Qj—dynamics of Y(t) are

dY

Y
= (ai − aj) · dW j

where W j is a standard n–dimensional Qj—Brownian motion. Applying
Ito’s formula once again to Si/j(t) = Y(t)e−(qi−q j)t , it follows easily that the
Qj—dynamics of Si/j(t) are given by

dSi/j

Si/j
= (qj − qi) dt + (a i − a j) · dW j

Returning to §3, we have σ 2 = ‖a 1 − a 2‖2 = ‖a 1‖2 + ‖a 2‖2 − 2ρ‖a 1‖
‖a 2‖ = σ 2

1 + σ 2
2 − 2ρσ1σ2 , as required.

5. The Results of Stulz
(Stulz 1982) derives the value of what are now called two asset rainbow
options. First the value of the call on the minimum of the two assets is
derived, by evaluating the (rather unpleasant) bivariate integral. Then a
min-max parity argument is invoked: having a two asset rainbow maxi-
mum call and the corresponding two asset rainbow minimum call is just
the same as having two vanilla calls on the two assets.

Finally put-call parity results are derived, enabling evaluation of the
put on the minimum and the put on the maximum. Rather than going
into any details we immediately proceed to the more general case
where we derive far more pleasant ways of immediately finding any
such valuation.

6. Many Asset Rainbow Options
In (Johnson 1987) extensions of the results of (Stulz 1982) are claimed to
any number of underlyings. However, the formulae in the paper are actu-
ally quite difficult to interpret without ambiguity: they are presented
inductively, and the formula (even for n = 3) is difficult to interpret
with certainty. Moreover, the formulae are not proved—only intuitions are
provided—nor is any numerical work undertaken to provide some comfort
in the results. The arguments basically involve intuiting what the delta’s of
the option in each of the n underlyings should be, and extrapolating from
there to the price. So one can say ‘bravo’ given that it is possible to actually
formally derive proofs for these many asset pricing formulae.

What we do is construct general Martingale-style arguments for all
cases n ≥ 2 which are in the style of the proof first found by Margrabe
and Ross.

Johnson’s results are stated for any number of assets. A rainbow op-
tion with n assets will require the n-variate cumulative normal function
for application of his formulae. As n increases, so the computational ef-
fort and execution time for having such an approximation will increase
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dramatically. In (West 2005) we have vb and c++ code for n ≤ 3 based
upon the Fortran of (Genz 2004), so here we apply this code to European
rainbow options with three stock underlyings, S1, S2 and S3. Code for
n > 3 does not seem to be available (in any language), at least in a form
that would make the computational time better than direct Monte Carlo
valuation of the original option.

Using that code, for the case n = 3 we can compare Monte Carlo sim-
ulation to the prices in (Johnson 1987); see for example Figure 1.

6.1 Maximum Payoffs
We will first price the derivative that has payoff max(S1, S2, . . . , Sn),
where the Si satisfy the usual properties. In fact, this is notationally quite
cumbersome, and all the ideas are encapsulated in any reasonably small
value of n, so we choose n = 4 (as we will see later, the fourth asset will be
the strike).

Firstly, the value of the derivative is the sum of the value of 4 other
derivatives, the ith of which pays Si(T) if Si(T) > Sj(T) for j �= i, and 0 other-
wise. Let us value the first of these, the others will have similar values
just by cycling the coefficients.

We are considering the asset that pays S1(T) if S1(T) is the largest
price. Now let S1 be the numeraire asset with associated martingale
measure Q1. We see that the value of the derivative is

V1(t) = S1(t)e
−q1 τ

E
Q1

t [1; S2/1(T) < 1, S3/1(T) < 1, S4/1(T) < 1]

= S1(t)e
−q1 τ

Q1[S2/1(T) < 1, S3/1(T) < 1, S4/1(T) < 1]

= S1(t)e
−q1 τ

Q1[ln S2/1(T) < 0, ln S3/1(T) < 0, ln S4/1(T) < 0]

(6)

where Si/j(T) = Si(T)

Sj(T)
.

Let σi/j = ‖a i − a j‖. We know that under Qj we have dSi/j

Si/j
= (qj − qi)dt+

(a i − a j) · dW j , so ln Si/j(T) ∼ φ(ln Si/j(t) + (q j − qi − 1
2 σ 2

i/j)τ , σi/j
√

τ ).

Note that, and define

σ 2
i/j = σ 2

i + σ 2
j − 2ρijσiσj

di/j
± =

ln
Si(t)

Sj(t)
+

(
qj − qi ± 1

2
σ 2

i/j

)
(τ )

σi/j
√

τ

di
± =

ln
Si(t)

K
+

(
r − qi ± 1

2
σ 2

i

)
(τ )

σi
√

τ

Hence Qj[Si/j(T) <> 1] = N(∓di/j
− ).

Note that di/j
± = −dj/i

∓ .

Also, the correlation between Si/k(T) and Sj/k(T) is

ρij,k := (a i − ak) · (a j − a k)

‖a i − a k‖‖a j − a k‖

= a i · a j − a i · a k − a k · a j + σ 2
k√

(σ 2
i + σ 2

k − 2a i · a k)(σ
2

j + σ 2
k − 2a j · a k)

= ρijσiσj − ρikσiσk − ρkjσkσj + σ 2
k√

(σ 2
i + σ 2

k − 2ρikσiσk)(σ
2

j + σ 2
k − 2ρjkσjσk)

(7)

Hence Q1[ln S2/1(T) < 0, ln S3/1(T) < 0, ln S4/1(T) < 0] = N3(−d2/1
− , −d3/1

− ,-
d4/1

− , �1) where �1, �2, �3 and �4 are 3 × 3 matrices; the simplest way to
think of them is that they are initially 4 × 4 matrices, with �k having ρij,k

in the (i, j)th position, and then the kth row and kth column are removed.
Thus, the value of the derivative that pays off the largest asset is

Vmax (t) = S1(t)e
−q1 τ N3(−d2/1

− , −d3/1
− , −d4/1

− , �1)

+ S2(t)e
−q2 τ N3(−d1/2

− , −d3/2
− , −d4/2

− , �2)

+ S3(t)e
−q3 τ N3(−d1/3

− , −d2/3
− , −d4/3

− , �3)

+ S4(t)e
−q4 τ N3(−d1/4

− , −d2/4
− , −d3/4

− , �4)

= S1(t)e
−q1 τ N3(−d2/1

− , −d3/1
− , −d4/1

− , ρ23,1, ρ24,1, ρ34,1)

+ S2(t)e
−q2 τ N3(−d1/2

− , −d3/2
− , −d4/2

− , ρ13,2, ρ14,2, ρ34,2)

+ S3(t)e
−q3 τ N3(−d1/3

− , −d2/3
− , −d4/3

− , ρ12,3, ρ14,3, ρ24,3)

+ S4(t)e
−q4 τ N3(−d1/4

− , −d2/4
− , −d3/4

− , ρ12,4, ρ13,4, ρ23,4)

(8)

6.2 Best and Worst of Call Options
Let us start with the case where the payoff is the best of assets or cash.
The payoff at expiry is max(S1, S2, S3, K). If we consider this to be the
best of four assets, where the fourth asset satisfies S4(t) = Ke−rτ and has
zero volatility, then we recover the value of this option from §6.1. This
fourth asset not only has no volatility but also is independent of the
other three assets.

Thus, a4 = 0, ρij,4 = ρij , σi/4 = σi = σ4/i , d
i/4
± = di

± , d4/i
± = −di

∓ . Thus

^
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Figure 1: Monte Carlo for call on minimum on 3 assets. On the hori-
zontal axis: number of experiments in 1000’s, using independent
Sobol sequences, on the vertical axis: price. The exact option value
using the formula presented here is 6.2273.

fig-1.eps
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Vmax (t) = S1(t)e
−q1 τ N3(−d2/1

− , −d3/1
− , d1

+, ρ23,1, ρ24,1, ρ34,1)

+ S2(t)e
−q2 τ N3(−d1/2

− , −d3/2
− , d2

+, ρ13,2, ρ14,2, ρ34,2)

+ S3(t)e
−q3 τ N3(−d1/3

− , −d2/3
− , d3

+, ρ12,3, ρ14,3, ρ24,3)

+ Ke−rτ N3(−d1
−, −d2

−, −d3
−, ρ12 , ρ13 , ρ23)

(9)

Now let us consider the rainbow call on the max option.
Recall, this has payoff max(max(S1, S2, S3) − K, 0). Note that

max(max(S1, S2, S3) − K, 0) = max(max(S1, S2, S3), K) − K

= max(S1, S2, S3, K) − K

and so

Vcmax (t) = S1(t)e
−q1 τ N3(−d2/1

− , −d3/1
− , d1

+, ρ23,1, ρ24,1, ρ34,1)

+ S2(t)e
−q2 τ N3(−d1/2

− , −d3/2
− , d2

+, ρ13,2, ρ14,2, ρ34,2)

+ S3(t)e
−q3 τ N3(−d1/3

− , −d2/3
− , d3

+, ρ12,3, ρ14,3, ρ24,3)

− Ke−rτ [1 − N3(−d1
−, −d2

−, −d3
−, ρ12 , ρ13 , ρ23)]

(10)

Finally, we have the rainbow call on the min option. (Recall, this has
payoff max(min(S1, S2, S3) − K, 0).) Because of the presence of both a
maximum and minimum function, new ideas are needed. As before we
first value the derivative whose payoff is max(min(S1, S2, S3), S4).

If S4 is the worst performing asset, then the payoff is the second worst
performing asset. For 1 ≤ i ≤ 3 the value of this payoff can be found by
using asset Si as the numeraire. For example, the value of the derivative
that pays S1, if S4 is the worst and S1 the second worst performing asset, is

S1(t)e
−q1 τ N3(d

2/1
− , d3/1

− , −d4/1
− , ρ23,1, −ρ24,1, −ρ34,1)

If S4 is not the worst performing asset, then the payoff is S4. Now the
probability that S4 is the worst performing asset is

N3(d
1/4
− , d2/4

− , d3/4
− , ρ12,4, ρ13,4, ρ23,4)

and so the value of the derivative that pays S4, if S4 is not the worst per-
forming asset, is

S4(t)e
−q4 τ [1 − N3(d

1/4
− , d2/4

− , d3/4
− , ρ12,4, ρ13,4, ρ23,4)]

Thus, the value of the derivative whose payoff is max(min(S1, S2 ,
S3), S4) is

V(t) = S1(t)e
−q1 τ N3(d

2/1
− , d3/1

− , −d4/1
− , ρ23,1, −ρ24,1, −ρ34,1)

+ S2(t)e
−q2 τ N3(d

1/2
− , d3/2

− , −d4/2
− , ρ13,2, −ρ14,2, −ρ34,2)

+ S3(t)e
−q3 τ N3(d

1/3
− , d2/3

− , −d4/3
− , ρ12,3, −ρ14,3, −ρ24,3)

+ S4(t)e
−q4 τ [1 − N3(d

1/4
− , d2/4

− , d3/4
− , ρ12,4, ρ13,4, ρ23,4)]

(11)

Hence the derivative with payoff max(min(S1, S2, S3), K) has value

V(t) = S1(t)e
−q1 τ N3(d

2/1
− , d3/1

− , d1
+, ρ23,1, −ρ24,1, −ρ34,1)

+ S2(t)e
−q2 τ N3(d

1/2
− , d3/2

− , d2
+, ρ13,2, −ρ14,2, −ρ34,2)

+ S3(t)e
−q3 τ N3(d

1/3
− , d2/3

− , d3
+, ρ12,3, −ρ14,3, −ρ24,3)

+ Ke−rτ [1 − N3(d
1
−, d2

−, d3
−, ρ12 , ρ13 , ρ23)]

(12)

and the call on the minimum has value

Vcmin (t) = S1(t)e
−q1 τ N3(d

2/1
− , d3/1

− , d1
+, ρ23,1, −ρ24,1, −ρ34,1)

+ S2(t)e
−q2 τ N3(d

1/2
− , d3/2

− , d2
+, ρ13,2, −ρ14,2, −ρ34,2)

+ S3(t)e
−q3 τ N3(d

1/3
− , d2/3

− , d3
+, ρ12,3, −ρ14,3, −ρ24,3)

− Ke−rτ N3(d
1
−, d2

−, d3
−, ρ12 , ρ13 , ρ23)

(13)

7. Finding the Value of Puts
This is easy, because put-call parity takes on a particularly useful role. It
is always the case that

Vc(K) + Ke−rτ = Vp(K) + Vc (0) (14)

where the parentheses denotes strike. V could be an option on the mini-
mum, the maximum, or indeed any ordinal of the basket. If we have a
formula for Vc(K), as established in one of the previous sections, then we
can evaluate Vc(0) by taking a limit as K ↓ 0, either formally (using facts
of the manner N2(x, ∞, ρ) = N1(x) and N3(x, y, ∞, �) = N2(x, y, ρxy)) or
informally (by forcing our code to execute with a value of K which is very
close to, but not equal to, 0 - thus avoiding division by 0 problems but
implicitly implementing the above-mentioned fact). By rearranging, we
have the put value.

8. Deltas of Rainbow Options
By inspecting (9) one might expect that

∂Vmax

∂S1
= e−q1 τ N3(−d2/1

− , −d3/1
− , d1

+, ρ23,1, ρ24,1, ρ34,1)

with similar results holding for ∂Vmax

∂S2
and ∂Vmax

∂S3
, and indeed for the dual

delta ∂Vmax

∂K .
Thus turns out to be true in this case, but to claim it as an ‘obvious fact’

would be erroneous. Recall Euler’s Homogeneous Function Theorem, which
we will cast in our case of a function of four variables V(x1, x2, x3, x4).
The theorem states that if V(λx1, λx2, λx3, λx4) = λV(x1 , x2, x3, x4) for any
constant λ then V(x1, x2, x3, x4) = x1

∂V
∂x1

+ x2
∂V
∂x2

+ x3
∂V
∂x3

+ x4
∂V
∂x4

.

The argument of (Johnson 1987) is essentially an application of this
theorem: he intuits what ∂V

∂Si
is and then ‘reassembles’ V using this result.

However, to claim a converse of the form that if V(x1, x2, x3, x4) =
x1 �1 + x2�2 + x3�3 + x4�4 for some ‘nice’ �i then of necessity �i = ∂V

∂xi

is false. (6) provides a counterexample; because certainly it is not the case
that ∂V

∂Si
= 0 for i > 1. To jump at the claim that it is an obvious fact that

the above is the formula for delta is probably an application of this false
converse.

However, these claims are true in the case of Vmax , as it is for Vcmax ,
Vcmin , Vpmax and Vpmin .

9 Finding the Capital Guarantee on the
‘Best of Assets or Cash Option’
We wish to determine the strike K of the ‘best of assets or cash’ option so
that at inception the valuation of the option is equal to K . Denoting the
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value of such an option as V(K)—implicitly fixing all other variables be-
sides the strike—we wish to solve V(K) = K .

To do so using Newton’s method is fortunately quite manageable, for
the same reasoning that we have already seen. As previously promised we
have from (9) that

∂V

∂K
= e−rτ N3(−d1

−, −d2
−, −d3

−, ρ12 , ρ13 , ρ23)

Hence the appropriate Newton method iteration is

Kn+1 = Kn − V(Kn) − Kn

∂V

∂K
|K=Kn

− 1
(15)

and this is iterated to some desired level of accuracy. An alternative
would be to iterate Kn+1 = V(Kn), our differentiation shows that the func-
tion V is a contraction, and so this iteration will converge to the fixed
point V(K) = K by the contraction mapping theorem.

It is important to note that the process of finding the fair theoretical
strike is not just a curiosity. In the first place, it is attractive for the buyer
of the option that they will get at least their premium back. (There is a
floor on the return of 0%.) Moreover, if K is this fair strike, the trader will
strike the option at an K∗ , where K∗ > K , in order to expect fat in the deal.

To see this, we can construct in a complete market a simple arbitrage
strategy: imagine that the dealer sells the client for K∗ an option struck at
K∗ , and hedges this with the ‘fair’ dealer by paying K for an option struck
at K.1 The difference K∗ − K is invested in a risk free account for the ex-
piry date. Three cases then arise:

• If max(S1, S2, S3) ≤ K then we owe K∗ . The fair trader pays K and we
obtain K∗ − K from saving, and profit from the time value of K∗ − K .

• If K < max(S1, S2, S3) ≤ K∗ , then the fair trader pays S1 say. We sell
this, and obtain the balance to K∗ from saving.

• If K∗ < max(S1, S2, S3), then the fair trader pays S1 say and we deliver
this.

10 Pricing Rainbow Options in Reality
The model that has been developed here lies within the classical Black-
Scholes framework. As is well known, the assumptions of that framework
do not hold in reality; various stylised facts argue against that model. For
vanilla options, the model is adjusted by means of the skew—this skew ex-
actly ensures that the price of the option in the market is exactly cap-
tured by the model. Models which extract information from that skew
and of how that skew will evolve are of paramount importance in mod-
ern mathematical finance.

After a moment’s thought one will realise what a difficult task we are
faced with in applying these skews here. Let us start by being completely
naïve: we wish to mark our rainbow option to market by using the skews
of the various underlyings. Firstly, what strike do we use for the underly-
ing? How does the strike of the rainbow translate into an appropriate
strike for an option on a single underlying? Secondly, suppose we some-
how resolved this problem, and for a traded option, wished to know its
implied volatility? A familiar problem arises: often the option will have

two, sometimes even three different volatilities of one of the assets which
recover the price (all other inputs being fixed). To be more mathematical,
the map from volatility to price is not injective, so the concept of implied
volatility is ill defined. See Figure 2.

To see the sensitivity to the inputs, suppose to the setup in Figure 2
we add a third asset as elaborated in Figure 3. Of course the general level
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Figure 2: The price for a call on the minimum of two assets. S1 = 2, S2 = 1, K = 1,
τ = 1, r = 10%, ρ = –70%, 20% ≤ σ1 ≤ 60%, σ2  ≤ 100%.
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Figure 3: The price for a call on the minimum of three assets. As above, 
in addition S3 = 1, σ3 = 30% fixed, correlation structure ρ12 = –70%, ρ13 =
30%, ρ23 = –20%.
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of the value of the asset changes, but so does the entire geometry of the
price surface.

Another issue is that of the assumed correlation structure: again, cor-
relation is difficult to measure; if there is implied data, then it will have
a strike attached. Finally, the joint normality hypothesis of returns of
prices will typically be rejected.

A popular approach is to use skews from the vanilla market to infer
the marginal distribution of returns for each of the individual assets and
then ‘glue them together’ by means of a copula function. Given a multi-
variate distribution of returns, rainbow options can then be priced by
Monte Carlo methods.
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