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Abstract
We apply order statistics to the setting of VaR estimation. Here techniques like histori-
cal and Monte Carlo simulation rely on using the k-th heaviest loss to estimate the
quantile of the profit and loss distribution of a portfolio of assets. We show that when
the k-th heaviest loss is used the expected quantile and its error will be independent of
the portfolio composition and the return functions of the assets in the portfolio. This is
not the case when a linear combination of simulated losses is used. Furthermore, we

1 Introduction
One of the techniques most frequently employed to estimate the Value
at Risk from historical data is Historical Simulation. Typically, the
basis is data from a 251 day-period from which 250 day-to-day relative
changes of the portfolio (denoted by X1, . . . , X250 in the following) can
be computed. Ranking them in increasing order, we obtain a sequence
of weakly increasing (logarithmic) relative returns X(1) ≤ . . . ≤ X(250 ) .
The 1%-quantile, usually used to calcualte regulatory capital, of the
underlying common distribution of the relative losses would now be
approximated by the 1%-quantile of the histogram of observed data,
viz. the “2.5th”-heaviest loss (that is, the “2.5th” value in the weakly
increasing sequence; we use the term “loss” here in a rather loose
sense, since there is always be the possiblity that the loss is actually a
gain), if this was defined. Some practitioners tend to take the 3rd-heav-
iest loss (that is, the 3rd value, X(3) , in the weakly increasing sequence)—
while others take the 2nd heaviest loss. Finally, some market participants
chose the average between the 2nd- and 3rd-heaviest loss, namely
X(2)+X(3)

2 . Initially is not clear, which one of these three estimators will

give the most acurate result, and the objective of this paper is to shed
some light on this issue by applying the theory of order statistics to
the problem. 

At the outset of this short paper, we shall give a brief account of the
theory of order statistics and an explanation under which assumptions
it can be applied to the setting of VaR estimation. Subsequently, we shall
employ basic results from this area to derive explicit integral formulae
for the expectation and standard deviation of the set of convex combina-
tions of order statistics (as a class of VaR estimators), as well as for the ex-
pected implied Value-at-Risk levels (defined as the quantile that is really
measured by the estimator) associated to such statistics. 

But the use of order statistics in mathematical finance is not limit-
ed to finding the optimal VaR estimator in historical simulations.
Besides applying the results derived for Historical Simulations to the
case where Monte Carlo simulations are used for VaR estimation,
order statistics can also be used to price option dependending on the
quantile of a distribution. An example for such an option would be 
an option paying the holder a fixed amoount if at the end of a year 
the best monthly return exceeds a predefined threshold. Within this
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Where X ∈ dx is a shorthand for X ∈ [x, x + dx], and the probability that
X ∈ dx is given by f (x). The first two terms in the final formula represent
the number of possible combinations, i.e. there are n possible choices for
X(k), and of the remaining n − 1 variables k − 1 must be smaller than x.
The corresponding probability is given by F(x), and conversly the proba-
bility that a return is larger (or equal) than x by 1 − F(x).

The formula can first of all be used to derive a formula for the distri-
bution function of the kth-heaviest loss, X(k), which we will denote by
Fk(x):

Fk(x) = n ·
(

n − 1

k − 1

) ∫ x

−∞
f (y)F(y)k−1 (1 − F(y))n−k dy . (2)

To solve this integral, we apply the transformation z = F(y). Using
dz = f (y)dy we obtain the following formula:

Fk(x) = n ·
(

n − 1

k − 1

) ∫ F(x)

0
zk−1 (1 − z)n−k dz . (3)

The Fk(x) can be calculated using the following recursion formula:

Fk+1(x) = Fk(x) −
(

n

k

)
(F(k))k (1 − F(x))n−k (4)

Where F0(x) = 1. Using this formula one easily computes:

F1(x) = 1 − (1 − F(x))n

F2(x) = 1 − (1 − F(x))n − nF(x)(1 − F(x))n−1
(5)

The expected implied VaR-level associated to the estimator X(k), that is,
E

[
F
(
X(k)

)]
, can also be computed from the above density formula for X(k),

yielding

E

[
F
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) ∫ ∞

−∞
f (x)F(x)k (1 − F(x))n−k dx

We can apply the same transformation, i.e. z = F(x), we applied to cal-
culate the density function to derive an explicit solution:

E[F(X(k) ] = n
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(6)
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paper we will shortly demonstrate how to price such options using
order statistics.

Though formulæ for most quantities will be derived, not all of them are
easily computed. And therefore, in a separate article by Naundorf et al.
(2006) results of a series of Monte Carlo Simulations will be presented, ex-
panding the theoretical results of this paper.

2 Order Statistics and its Application 
to VaR-Computation
Several monographs have been written on the subject of order statistics
(e.g. the classical work by David and Nagaraja (2003)), however, for our
purposes, only the very basic idea needs to be recalled, which can be
found for instance as part of web lecture notes by Susan Holmes [2].

Suppose X1, . . . , Xn , for arbitrary n ∈ N, are independent identically
distributed real-valued random variables on a probability space (�,A, P),
X1 (and hence all other Xi, i ∈ {1, . . . , n}) having a continuous distribution
density f and distribution function F.

Inductively, the ith order statistic (denoted by X[i] ), for i ∈ {1, . . . , n}, is
defined by

X[i] := min
({X1, . . . , Xn} \ {

X[j] : j < i
}) ∧ max {X1, . . . , Xn} ,

that is

X[1] := min {X1, . . . , Xn} ,

X[2] := min
({X1, . . . , Xn} \ {

X[1]

})
,

...

X[n] := max {X1, . . . , Xn} .

Note the a priori difference between the sequences 
(
X[i]

)
i∈{1,...,n} and(

X(i)

)
i∈{1,...,n} as defined in Section 1, a difference which will be observable

if and only if at least two of the random variables X1, . . . , Xn attain the
same value: The sequence 

(
X(i)

)
i∈{1,...,n} is only weakly increasing, whereas

the sequence 
(
X[i]

)
i∈{1,...,n} is strictly increasing until it stabilises in

max {X1, . . . , Xn}.
However, for any two i, j ∈ {1, . . . , n}, the distribution of the random

variable Xi − Xj is, due to the independence of Xi and Xj, merely the con-
volution of the distributions of Xi and −X j, hence also continuous. Thus
P

{
Xi − Xj = 0

} = 0, entailing that all X1, . . . , Xn are pairwise distinct
with probability 1.

As a corollary to this observation, one has for arbitrary k ∈ {1, . . . , n}
and x ∈ R,
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Simlilarly, we can calculate the expected variation of the implied
VaR-level:

E

[
�F

(
X(k)

)2
]

= 2k + 1

(n + 1)2
(7)

Note that neither the implied VaR-level nor its variation (and there-
fore its error) do depend on the specific parametric function. Whether
you use Historical Simulation for a portfolio consisting of a single share
or a large portfolio with a complex return function, the expected implied
VaR-level and its error will only depend on your choice of k and the num-
ber of observations. And it will also be independent of the individual re-
turn functions of the underlying assets.

Applying these results to our initial problem, one can calculate that
in a Historical Simualtion based on 250 portfolio returns the VaR levels
implied by the 2nd- and 3rd-heaviest loss will be approximately (0.80±
0.56)% and (1.20± 0.69)% respectively. So loosely speaking if you use the
2nd-heaviest loss you end up about 20% too conservative on average,
while if you use the 3rd-heaviest instead you are about 20% not conserva-
tive enough. But in both cases the simulation results will vary by a large
amount, implying that a large fraction of the results will lay above the de-
sired 1% quantile. Using (4) the corresponding probabilities can be
computed, and one finds that for the second-heaviest loss 28.6% of the
simulations will have an implied quantile above 1% and 11.0% above
1.5%. For the 3rd-heaviest loss these values rise to 54.3% and 27.5% re-
spectively, i.e. in almost thiry percent of all simulations one will measure
a VaR-level above 1.5%. Note that these computations do not tell us how
large the error will be in absolute terms, i.e. whether one is off by one or
one million Euro, which will depend on the specific parametric function
and the portfolio.

In practice this structural problem of Historical Simulations is ampli-
fied by the large memory effect caused by the use of historical time se-
ries. Therefore, if today’s VaR level is off by a large amount, tommorow’s
implied-VaR will not be much better since it will be based on almost the
same time series.

The question is now, is the average of the 2nd- and 3rd-heaviest loss a
better estimator? Unfortunately, the situation is slightly more complicated
when you opt for using a linear combination of the X(k) as we demon-
strate below.

But before we do this, let us briefly discuss how these results apply to
the case where Monte Carlo simulations are used for VaR-estimation. In this
setting, the expected implied VaR-level will once again be independent of
the specific parametric distribution or portfolio. Furthermore, assuming
that you choose k = αn (though our results suggest that k = α(n + 1)

would be a better choice), for large n the error of the quantile measured in
the simulations will be given by:

√
E

[
�F

(
X(αn)

)2
]

≈
√

2α

n
(8)

Hence, improving the accuracy of the confidence level by one order of
magnitude requires an increase in the number of simulations by two or-
ders of magnitude. So convergence is slow, using 1000 simulations to es-
timate the 1%–quantile the error will be about 0.45% (which translates to

a relative error of 45%!), and for 10000 simulations it will only drop to
0.14% (still an 14% relative error). Again, this is the error of the quantile
the absolute size of the error in Euro terms will depend on the parametric
function.

These formulæ for the density of X(k) can also be used to derive explic-
it integral formulæ for the expectation and variance of X(k) : 

E

[
X(k)

] = n ·
(

n − 1

k − 1

) ∫ ∞

−∞
xf (x)F(x)k−1 (1 − F(x))n−k dx,

V

[
X(k)

] = n ·
(

n − 1

k − 1

) ∫ ∞

−∞
x2 f (x)F(x)k−1 (1 − F(x))n−k dx − [

X(k)

]2
.

(9)

From this, one immediately gets an integral formula for the expecta-
tion of X(k)+X(k+1)

2 : 
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2
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(10)

In order to derive results on the implied VaR level and higher mo-
ments of the estimator X(k)+X(k+1)

2 , we again need to find a density formula
as in (9) first (this time, the joint density of X(k) and X(k+1) ): For all x, y ∈ R

and k < n,
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The distribution of X(k) + X(k+1) can thus be computed as 

P

{
X(k) + X(k+1) < z

}
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∫
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P
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(
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+f (z)F(z)k−1
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)
dz

(12)

In order to be entitled to apply the results of this Section to the se-
quence of day-to-day relative changes of the portfolio value, we need to
suppose these changes to be independent and identically distributed.
This property of the portfolio value process would follow, for instance, if
one imposed the assumption of it being a log-Lévy process.

So, by means of (10), we have found a formula to compute the expect-
ed arithmetic mean of the second and third-heaviest loss and can com-
pare this to the exact 1%-quantile of the underlying distribution for the
relative portfolio change. Thanks to (12), we now obtain formuale for the
implied VaR level and the variance of X(k)+X(k+1)

2 :

[
F
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2
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]
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n
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2

Unfortunately, the independence of the Xi, i ∈ {1, . . . , n}, does not
imply the independence of X(k), X(k+1)—otherwise, Bienaymé’s identity

could have been applied to derive a simpler expression for V
[

X(k)+X(k+1)

2

]
in

terms of f and F.
In contrast to the VaR estimators based on the kth-heaviest loss, this

time the implied VaR level does depend on the parametric function. And
calculating it requires solving the above integral. Only for simple cases
this integral can be computed analytically, but even then the calculatons
are cumbersome. If the Xi are distributed uniformly between 0 and 1 (the
simplest case) one finds:

E

[
F

(
X(k) + X(k+1)

2

)]
= 1

2

2k + 1

n + 1
(13)

Hence, in this case, the implied VaR level is given by the average of the
VaR levels implied by the kth and and (k + 1)st-heaviest loss. That this is
not a general result can be seen if one assumes the Xi to be exponential
distributed. In this case one obtains:

E

[
F

(
X(k) + X(k+1)

2

)]
= 1 − (n − k)(n − k + 1)

(n + 1)(n − k + 1
2 )

= E

[
F
(
X(k)

)] + n − k + 1

2(n + 1)(n − k + 1
2 )

(14)

The only general statement that can be made about the implied VaR
level is that it will be bounded by the VaR levels implied by the kth and
(k + 1)st-heaviest loss, because:

X(k) ≤ X(k) + X(k+1)

2
≤ X(k+1)


⇒ F
(
X(k)

) ≤ F

(
X(k) + X(k+1)

2

)
≤ F

(
X(k+1))

)

⇒ E

[
F
(
X(k)

)] ≤
[

F

(
Xk + X(k+1)

2

)]
≤ E

[
F
(
X(k+1)

)]
Returning to the problem which spurred our interest in order statis-

tics, namely whether the average of the 2nd- and 3rd-heaviest will in gen-
eral be a better VaR estimator, we can only conclude that it will be more
conservative than the 3rd, but it might still not be conservative enough. 

Note that it was only for the sake of simplicity that we have confined
ourselves to studying the estimator X(k)+X(k+1)

2 as the most “sophisticated”
object here—in a similar vein, arbitrary convex (and even general linear)
combinations of order statistics can be investigated as well.

3 Option Pricing with Order Statistics
Let us assume that you observe the performance of a share (or any other
financial asset) over N periods of equal length, e.g. 12 months, and Xi is
the logarithmic performance of the share in the ith period, i.e.:

Xi = ln

(
Si+1

Si

)
,

where Si is the price of the share at the beginning of the ith period.
Assuming that the Xi are independent identically normal distributed, we
know from standard option pricing theory that we have to use the risk
neutral measure if wish to price any option dependent on the Xi . Hence,
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we assume:

Xi ∼ N

((
r − σ 2

2

)
�t, σ�t

1
2

)
,

where σ is the annualized volatility of the share, r the short rate, and �t
the length of each period. The distribution function F(Xi) of the Xi is
given by: 

F (Xi) = 1

2π

∫ Zi

−∞
e− z2

2 dz ≡ N(Zi)

Zi = Xi − (r − 1
2 σ 2)�t

σ�t
1
2

(15)

The results of the last section can be used to price various options de-
pendent on the kth-heaviest loss, X(k), of the time series. And for binary
options it is even possible to derive analytical solutions. The value PVk of
a binary option  paying one currency unit if the kth-heaviest loss is above
the strike level X (i.e. the option will pay one currency unit if the kth
worst performance is better than X, which itself will be a logarithmic-
performance) is given by:

PVk = e−rT
E(H(X(k) − X)) = e−rT (1 − Fk (X)) , (16)

where H is the Heavyside function, i.e. H(x) is 1 if x > 0 and zero other-
wise, and Fk is given by (3).

As an example, let us take an option paying one currency unit if the
worst monthly (logarithmic) performance in the next 12 months lies above
the strike level X. Using (5) we compute the value of the option to be:

PV1 = e−rT (1 − F (X))12 (17)

Note that in practice one would probably use a relative rather than a
logarithmic strike level, but since it is easy to transform one into the
other this is not really a challenge. More challenging is to calculate the
option value during its lifetime, where the performance in past months
and in the current month (month to date performance) have to be taken
into account. Some simple cases are easily solvable, e.g. for a binary call
option on the best monthly performance you only have to work out the
probability to exceed the strike level in the current month as well as the
probability of exceeding it in one of the remaining months, if you hap-
pen to miss it in the current. A full discussion of this topic is beyond the
scope of this paper.

4 Discussion and Conclusion
The theory of order statistics has various applications in mathematical fi-
nance. In this paper we used it too calculate various properties of the
quantile measured in Historical Simulations (and Monte Carlo simula-
tions). We found that the VaR level implied by the kth-heaviest  loss (the
expected quantile) does not depend on the actual parametric function,
which in particular means that it is independent of the portfolio and the
return functions of the underlying assets. In a Historical Simulation
based on 250 relative portfolio returns the 2nd-heaviest loss implies a
VaR level of approximately 0.8% and the 3rd-heaviest loss of 1.2%. So nei-
ther is a perfect estimator, because one is (looseley speaking) 20% too
conservative, while the other is about 20% not conservative enough.
Worse, both values vary widely, and when the 2nd-heaviest loss is used
the fraction of results effectively yielding a quantile above the desired 1%
level is 28.6%, which rises to 54.3 % if the 3rd-heaviest loss is used. 

Unfortunately, order statistics does not allow us to check whether the
VaR level implied by the average of the 2nd- and 3rd-heaviest loss is in
general a better estimator, since it will depend on the parametric distribu-
tion function. However, since it is bounded by the VaR levels implied by
the 2nd- and 3rd-heaviest loss, we know that at least it will be a more con-
servative estimator than the 3rd-heaviest loss.

Note that there are plenty of other applications of order statistics in
mathematical finance. For example, Pritsker (1997) uses order statistics
to calculate errors on VaR. And order statistics can also be applied to
price options, as we have briefly demonstrated above (again there are
other examples, e.g. Akahori (1995)).
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