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FINFORMATICS

How to Measure Really Small Things

T
raders in financial assets implicitly compare the trading
price to the stream of dividends the assets stand to generate.
Clearly, a key determinant of value—usually the key determi-
nant—will be the long-term drift or rate of growth or rather,
it’s clear to everyone except orthodox finance theorists.You
see, orthodox finance has been mesmerized by Black-Scholes—

where the drift, exactly offset by risk-aversion, drops out of equilibrium op-
tion values—into believing that the drift never matters. But this assumes that
everyone knows what the drift is. In reality, that hardly ever applies. It can’t,
both because the drift is too shrouded in noise to measure exactly and 
because the drift tends to change over time. In consequence, people with s
uperior knowledge of the drift stand to profit from betting against the 
market consensus.

In previous Finformatics we worked the optimal way to update probabili-
ty estimates of drift, assuming a Markov switching process between various
constant values. Given a multitude of regimes i with drift µI and volatility
σ , an objective or subjective likelihood pi of being in regime i, instanta-
neous switching probabilities λij for migrating from regime i to and other
regime j, λii ≡ − ∑

i �=j λij defined as the negative of the instantaneous prob-
ability of switching out of regime i, and an observation dx = µ?dt + σdz for
standardized Brownian noise dz and unknown drift µ?, the optimal Learning
Equation is again:

dpi = pi

(
µi − E

σ

)
dW + 〈

λji

〉
dt

where 〈·〉 ≡ ∑
j ·pj denotes the expectations operator over index j, E ≡ 〈

µj

〉
denotes the expected drift, and dW ≡ dx − Edt

σ
is the best estimate of stan-

dardized Brownian motion given expectations.
As we recall, the Learning Equation is best interpreted as the sum of be-

lief revision and expected regime-switching. The belief revision is the product 

of three effects: the current conviction pi, the idiosyncrasy 
µi − E

σ
of the
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current belief measured relative to observation noise, and the news or
surprise value of the standardized residual dW. The expected regime-
switching is just the difference between expected movements into regime i
and movements out of regime i.

Obviously this is much more comprehensive than the orthodox single-
state framework. But at first glance it’s not nearly comprehensive enough.
How do we incorporate drifts that may depend on other variables includ-
ing time? And how do we tractably handle updating a possible continuum
of regimes? That’s the focus of this article.

Caveats
Let me pause to acknowledge that the Learning Equation applies only to re-
ally small things. By “really small” I mean infinitely divisible without any
discrete jumps. We know it can’t apply to bigger things, not always, be-
cause if dW is big enough relative to the idiosyncrasy and has the wrong
sign, the corresponding pi will drop below zero.

Interestingly, daily observations aren’t always small enough. Consider
for example a discrete approximation to the Learning Equation that posits
various regimes with yearly Sharpe ratios ranging from −2 to +2 and up-
dates using daily data. The daily Sharpe ratios µ/σ of the various regimes
will range from approximately −1/8 to +1/8, for a maximal idiosyncrasy
of 1/4, It follows that daily outliers over 4 standard deviations could gener-
ate negative probabilities, absent modification. I won’t deal here with the
modifications, simply assume that we’re measuring finely enough with
clean enough data not to worry about such things.

Another caveat is that we’re assuming perfect measurement of dx, with-
out noise or dullness in the measurement stick itself. Otherwise we could-
n’t measure finely enough to be absolutely sure about observation noise σ .
In practice we are indeed not absolutely sure about σ ; we can’t be because
things like tick size bounds and bid/ask spreads get in the way. I’m not
going to address that here either. We need to learn to walk before we fly.
Besides, it’s extremely important to appreciate that most of our problems
reflect the problem of estimating drift on short intervals no matter how
good our measuring stick is.

Complex Regimes
With these caveats, let’s return to the original Markov-switching frame-
work but relax our identification of each regime i with a fixed µi . Instead,
let’s allow each µi to be a function fi of a vector Y of other variables. One of
those other variables can be time, which allows for deterministic changes
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in drift. The variables can also include economic fundamentals like GDP
growth or profit margins. There’s no limit other than that, properly speak-
ing, Y should not include the beliefs p about which regime applies.

Now if we review the statement of the Learning Equation, we see that
holding beliefs and regime-switching probabilities fixed, none of the updates
depend on anything other than the drift in a given regime and the expected
drift over all regimes. Whether µi ≡ fi(Yi) denotes a very complex regime or
simply a fixed state is totally irrelevant, provided we know its current value.
That irrelevance is borne out in the derivation as well. So the answer about
what needs to change in the Learning Equation is very simple: nothing!

That conclusion can be discomfiting. Consider for example two regimes
that currently have the same drift. Or even betters, consider two regimes
that always have the same drift and differ only in relevant switching
propensities? How will the Learning Equation distinguish them? If can’t,
other than thru the slow changes of expected regime-switching. On reflec-
tion, however, we can’t expect observation to distinguish regimes when the
regimes produce identical observations. And the Learning Equation is al-
ways first and foremost geared to seeking truth from observation.

One potential application comes in weighing two different models of
reality. Suppose that we’re sure that only one of models A or B applies.
Classical statistics would force us to derive potentially super-complex likeli-
hood functions for each of the two models, take their ratio, and discard the
worse one when the ratio gets high enough. The Learning Equation will
simply update the probability pA that model A is correct according to

dpA = pA(1 − pA)

(
µA − µB

σ

)
dW

Note that this applies regardless of the structure of model A or model B.
What could be simpler? It’s so simple that if we have non-normal or lumpy
observations it’s tempting to reformulate the decision problem so as to
apply this updating rule as an approximation. 

Distilling a Continuum
The main practical worry in applying the Learning Equation is that, even
though each particular update is simple, the number of regimes that need
updating may be prohibitively high. In principle, we may even need a con-
tinuum of regimes, and no one can count a continuum.

Fortunately, one kind of belief continuum turns out to be extremely
easy to update. That’s where beliefs stay normal. Consider first the special
case where all switching probabilities λ are zero. If the initial beliefs are
normal and a normal observation is recorded, it is well known that the up-
dated beliefs are normal too. Using the word “precision” to describe the in-
verse variance, the new mean can be calculated as the precision-weighted
average of the prior mean and the observation, while the precision of the
new beliefs equals the sum of the precisions of prior and observation.
Hence, if the prior mean and variance are M and V respectively, then the
new mean drift and variance after an observation dx/dt with variance σ 2/dt
will be

Enew = 1/V E + dt/σ 2 · dx/dt

1/V + dt/σ 2
= E + Vdx/σ 2

1 + Vdt/σ 2

∼= (E + Vdx/σ 2)(1 − Vdt/σ 2)

∼= E + V

σ

(
dx − Edt

σ

)
= E + V

σ
dW

Vnew = 1

1/V + dt/σ 2
= Vσ 2

Vdt + σ 2
= V

1 + Vdt/σ 2

∼= V(1 − Vdt/σ 2) = V − V2

σ 2
dt

We can derive the same results more elegantly using the cumulant form of
the Learning Equation, which we developed in previous Finformatics.
Unfortunately, the derivation given there contains a mistake, so let me quickly
redo the relevant parts. Given a characteristic function (Poisson transform)
ϕ(b) ≡ 〈

eibµ
〉
of a distribution, the cumulants are the coefficients Cn in the Taylor

series expansion below of ξ(b), the logarithm of the characteristic function:

ξ(b) ≡ ln ϕ(b) =
∞∑

n=0

(ib)n

n!
Cn

Since the characteristic function has differential

dϕ(b) =
∫

eibµdp(µ) =
∫ 〈

λνµ

〉
ν

eibµdµ + 〈
eibµ(µ − E)

〉 dW

σ

its logarithm by Ito’s rule has differential of: 

dξ(b) = dϕ(b)

ϕ(b)
− 1

2

〈
eibµ(µ − E)

〉2
ϕ2(b)σ 2

dt

=

∫ 〈

λνµ

〉
ν

eibµdµ〈
eibµ

〉 − 1

2

( 〈
eibµ(µ − E)

〉
〈
eibµ

〉
σ

)2

 dt +

〈
eibµ(µ − E)

〉
〈
eibµ

〉 dW

σ

≡
[∫ 〈

λνµ

〉
ν

eibµdµ〈
eibµ

〉 − Q 2(b)

2σ 2

]
dt + Q (b)

dW

σ

Since 
d

〈
eibµ

〉
db

= 〈
iµeibµ

〉
, we can rewrite Q as 

Q (b) ≡
〈
eibµ(µ − E)

〉
〈
eibµ

〉 = −i
d ln

〈
eibµ

〉
db

− E

= −iξ ′(b) − E =
∞∑

n=0

(ib)n

n!
Cn+1 − C1 =

∞∑
n=1

(ib)n

n!
Cn+1

By equating each term in the Taylor expansion of dξ(b) we see that the
volatility of Cn equals Cn+1/σ for all n, which in most cases implies a never-
ending nontrivial chain. But with a normal distribution of beliefs the chain
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simplifies enormously, because all normal cumulants of order 3 or higher
vanish. In that case Q = ibV , and if all the λ’s vanish too the updating is
completely described by:

dC1 ≡ dE = V

σ
dW

dC2 ≡ dV ≡ − V2

σ 2
dt

dC3 = dC4 = · · · = 0

In other words, the distribution stays normal with the mean and vari-
ance updates above. Granted, this demonstration is more circuitous than a
normal distribution requires, but it helps explain why normal distribu-
tions are so special. No other distribution of beliefs lends itself to such sim-
ple updating using the Learning Equation.

Non-zero λ could easily destroy normality. But suppose regime tran-
sitions are specially designed so as to preserve normality. In that case,∫ 〈

λνµ

〉
ν

eibµdµ〈
eibµ

〉 must be quadratic in b, implying 

dE = Fdt + V

σ
dW

dV ≡
(

G2 − V2

σ 2

)
dt

for some scalars F and G2. That is the essence of the Kalman filter, which is
the world’s best-known model of regime-switching.

If desired we could allow F and G2 to vary over time or with other vari-
ables Y. However, the case of constant G2 and zero F is particularly interest-
ing because it generates a filter even more basic than Kalman. Note that dV
will be positive for V < Gσ and negative for V > Gσ . Hence updating is driv-
en toward an equilibrium in which V = Gσ and 

dE = GdW = G

σ
(dx − Edt) = V

σ 2
(dx − Edt)

That’s just a simple exponentially weighted average (EWA) with updat-
ing coefficient V/σ 2 . Usually we simply interpret that updating coefficient
as the inverse of the effective duration, and the EWA itself as just a cheap
recursive substitute for simple averaging. But in our current framework we
can regard the EWA as an optimal estimate under the conditions specified
above, for V an equilibrium level of uncertainty.

Mixtures of Normal Beliefs
Now that we’ve seen how to model normal beliefs simply, let’s try to model
mixtures of normal beliefs. Let k = 1,..,K denote various normal compo-
nents, with current means E1,..,EK , constant conditional variances V1,..,VK ,
and mixing probabilities θ1,..,θK . Let us assume in addition that Markov
transitions occur between components without blemishing the normality
of either component, and let λjk denote the transition from component j to
component k. Let pk (µ) denotes the conditional density at µ given compo-
nent k, and p(µ) the unconditional density, so that p(µ) = ∑K

k=1 pk(µ). The
Learning Equation tells us to calculate updates as

dpk(µ) = pk(µ)

(
µ − E

σ

)
dW

from which it follows that

dEk =
∫

k µdpk(µ)dµ∫
k pk(µ)dµ

=
∫

k µ(µ − E)pk(µ)dµ

σθk
dW = Vk

σ
dW

dθk =
∫

k
dpk(µ)dµ = dW

σ

∫
k
(µ − E)pk(µ)dµ

= dW

σ

∫
k
(µ − Ek + Ek − E)pk(µ)dµ

= dW

σ

∫
k
(µ − Ek)pk(µ)dµ + dW

σ

∫
k
(Ek − E)pk(µ)dµ

= 0 + dW

σ
(Ek − E)θk = θk

Ek − E

σ
dW

In other words, we can update the mixed normal distribution of beliefs by
separately updating the conditional means of each component and the mix-
ing weights. To confirm that the aggregate mean moves as required, note that

dE = d

(∑
k

θk Ek

)
=

∑
k

θkdEk +
∑

k

Ek dθk

=
∑

k

θk
Vk

σ
dW +

∑
k

Ekθk
Ek − E

σ
dW

= dW

σ
(〈Vk〉 + Var(Ek)) = Varagg

σ
dW

Again, it is quite easy for the regime transitions to muddy the normali-
ty of each component. To avoid this, let us simply assume that probability
mass gets transferred only from one mixing component to another, with-
out altering the conditional weights within any given component. Then if
λjk denotes the instantaneous probability of shifting from component j to
component k and λkk the negative of the probability of shirting out of k,
then the updating equation for conditional means changes to

dEk = 〈
λkj

〉
dt + Vk

σ
dW

while the updating equation for dθk remains the same.
Thus we have a very tractable way to update mixed normal distribu-

tions of beliefs, provided we restrict the transition matrix which is empiri-
cally difficult to identify anyway. Combine that with flexible
interpretation of the various µi and their determinants and we obtain a
tractable system for estimating virtually any diffusion. Basically it throws a
bunch of measuring sticks at the diffusion, updates the mean estimate for
each, and also updates the confidence in each measuring stick.

Moreover, while each update depends on every other, the requirements
for information-sharing are incredibly small. A central coordinator should
compute the current consensus mean E and the deviation dW of the latest
observation from the consensus. The rest of the updating can be done lo-
cally, without any more detail from other regimes on estimation results or
methodology, It’s hard to imagine a more ridiculously simple updating sys-
tem, unless it’s simply ridiculous.


