
 T he 1977 science fiction movie Close 
Encounters of the Third Kind was 
written and directed by Steven 
Spielberg. The title is derived from 
the classification by Hynek for close 

encounters with aliens, in which the third kind 
denotes human observations of animate beings. 
Richard Dreyfuss plays an electrical lineman from 
Indiana with an obsession with UFOs – Steve 
McQueen was Spielberg’s first choice and he liked 
the script but turned it down because he felt that he 
would be unable to cry on cue.

Why is the third order relevant? And now 
I’m talking about third-order implied volatility 
approximations starring Matt Lorig and his two 
Italian co-stars, Stefano Pagliarani and Andrea 
Pascucci in my early 2014 adaptation of their 
original 2013 paper. I like to think that I possess 
a healthy skepticism when it comes to the use of 
analytic approximations in option pricing, but this 
working paper and their associated Mathematica 
code is well worth reading (even if you don’t 
go as far as I did and actually buy a license for 
Mathematica, as you can read their notebook files 
for free).

Their paper has similar approximations for 
the CEV, SABR, Heston, and 3/2 stochastic vol-
atility models, but I have chosen to concentrate 
on the quadratic local volatility model here. Leif 
Andersen suggests that, due to their tractability, 
quadratic volatility models might serve as a con-
venient alternative to more complicated local-sto-
chastic volatility models. His 2008 working paper 
presents formulas for European option prices 
under quadratic volatility (for differing numbers 
of real roots as well as allowing for absorbing 
barriers) and pads out the remaining pages with 
a mere nine lemmas and eight propositions. His 
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lemma 5 describes the case when the quadratic has 
two real roots and both are to the right of the ini-
tial asset value (replicated as equation 50 in Lorig, 
Pagliarani, and Pascucci) and forms the basis for 
my EuroCallQLV function. 

Their third-order implied volatility approxi-
mation for the quadratic volatility model is given 
in equation 49 and, like their approximations for 
other volatility models, contains no numerical 
integration or, indeed, any special functions – you 
will see only cosh and sinh in my ImpliedVolQLV 
function code. The resulting implied volatility can 
then easily be used as an input into the standard 
Black–Scholes valuation formula. They claim a 
relative error of less than 1 percent for nearly all 
strikes when option maturity is less than four 
years, and a relative error below 3 percent when 
maturity extended to ten years.  

Fortunately, their paper stops at third-order 
approximations and does not continue on to the 
corresponding fourth-order approximations – 
Hynek’s scale has been extended to cover close 
encounters of the fourth kind that would involve 
the abduction of a human being by a UFO or its 
occupants! 

Mike  Staunton
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Option Base 0

Function vaEuroCallQLV(S#, K#, delta#, capL#, 
capR#, Tyr#) As Double
Dim eL#, eR#, cR#, cL#
Dim K1#, K2#, S1#, S2#
Dim V#, SqrV#, d1p#, d1m#
Dim d2p#, d2m#

eL = Exp(capL)
eR = Exp(capR)
cR = (eR - S) / (eR - eL)
cL = (eL - S) / (eR - eL)
K1 = (eL - K) * cR
K2 = (eR - K) * cR
S1 = cL * (eR - K)
S2 = cL * (eL - K)

V = delta * delta * Tyr
SqrV = Sqr(V)
d1p = (Log(S1 / K1) + 0.5 * V) / SqrV
d1m = (Log(S1 / K1) - 0.5 * V) / SqrV
d2p = (Log(S2 / K2) + 0.5 * V) / SqrV
d2m = (Log(S2 / K2) - 0.5 * V) / SqrV

vaEuroCallQLV = K1 * vaCND(-d1m) - S2 * vaC-
ND(d2p) - S1 * vaCND(-d1p) + K2 * vaCND(d2m)
End Function

Function vaImpliedVolQLV(sk#, x#, delta#, 
capL#, capR#, Tyr#) As Double
Dim kmx#, Lmx#, Rmx#, LmR#
Dim eL#, eR#, ex#, d2#
Dim a10#, a20#, a30#, sig0#
Dim sig02#, sig04#, sig1#, sig21#
Dim sig22#, sig2#, sig31#, sig32#
Dim sig3#

kmx = sk - x
Lmx = capL - x

Rmx = capR - x
LmR = capL - capR
eL = Exp(capL)
eR = Exp(capR)
ex = Exp(x)
d2 = delta * delta

a10 = d2 * (-Sinh(Lmx + Rmx) + Sinh(Lmx) + 
Sinh(Rmx)) / (Cosh(LmR) - 1)
a20 = 0.25 * d2 * (2 * Cosh(Lmx + Rmx) - 
Cosh(Lmx) - Cosh(Rmx)) * Csch(0.5 * LmR) * 
Csch(0.5 * LmR)
a30 = eL * eR * d2 * (-4 * Sinh(Lmx + Rmx) + 
Sinh(Lmx) + Sinh(Rmx)) / (3 * (eL - eR) * (eL - 
eR))

sig0 = delta * (eR - ex) * (eL - ex) / (ex * (eR 
- eL))
sig02 = sig0 * sig0
sig04 = sig02 * sig02

sig1 = 0.5 * a10 * kmx / sig0

sig21 = -Tyr * (12 + Tyr * sig02) * a10 * a10 / 
(96 * sig0) + Tyr * sig0 * a20 / 6
sig22 = (-3 * a10 * a10 + 4 * sig02 * a20) * kmx 
* kmx / (12 * sig0 * sig02)
sig2 = sig21 + sig22

sig31 = (-12 + Tyr * sig02) * a10 * a10 * a10 + 
4 * sig02 * (8 + Tyr * sig02) * a10 * a20 - 48 * 
sig04 * a30
sig32 = 3 * a10 * a10 * a10 - 5 * sig02 * a10 * 
a20 + 3 * sig04 * a30
sig3 = -Tyr * sig31 * kmx / (192 * sig0 * sig02) 
+ sig32 * kmx * kmx * kmx / (12 * sig0 * sig04)

vaImpliedVolQLV = sig0 + sig1 + sig2 + sig3
End Function

the VBA code


