
 T he 1977 science fiction movie Close
Encounters of the Third Kind was
written and directed by Steven
Spielberg. The title is derived from
the classification by Hynek for close

encounters with aliens, in which the third kind
denotes human observations of animate beings.
Richard Dreyfuss plays an electrical lineman from
Indiana with an obsession with UFOs – Steve
McQueen was Spielberg’s first choice and he liked
the script but turned it down because he felt that he
would be unable to cry on cue.

Why is the third order relevant? And now
I’m talking about third-order implied volatility
approximations starring Matt Lorig and his two
Italian co-stars, Stefano Pagliarani and Andrea
Pascucci in my early 2014 adaptation of their
original 2013 paper. I like to think that I possess
a healthy skepticism when it comes to the use of
analytic approximations in option pricing, but this
working paper and their associated Mathematica
code is well worth reading (even if you don’t
go as far as I did and actually buy a license for
Mathematica, as you can read their notebook files
for free).

Their paper has similar approximations for
the CEV, SABR, Heston, and 3/2 stochastic vol-
atility models, but I have chosen to concentrate
on the quadratic local volatility model here. Leif
Andersen suggests that, due to their tractability,
quadratic volatility models might serve as a con-
venient alternative to more complicated local-sto-
chastic volatility models. His 2008 working paper
presents formulas for European option prices
under quadratic volatility (for differing numbers
of real roots as well as allowing for absorbing
barriers) and pads out the remaining pages with
a mere nine lemmas and eight propositions. His

Close Encounters of the Third Order

52� wilmott magazine

Implied volatility
approximations atop
the Devils Tower

lemma 5 describes the case when the quadratic has
two real roots and both are to the right of the ini-
tial asset value (replicated as equation 50 in Lorig,
Pagliarani, and Pascucci) and forms the basis for
my EuroCallQLV function.

Their third-order implied volatility approxi-
mation for the quadratic volatility model is given
in equation 49 and, like their approximations for
other volatility models, contains no numerical
integration or, indeed, any special functions – you
will see only cosh and sinh in my ImpliedVolQLV
function code. The resulting implied volatility can
then easily be used as an input into the standard
Black–Scholes valuation formula. They claim a
relative error of less than 1 percent for nearly all
strikes when option maturity is less than four
years, and a relative error below 3 percent when
maturity extended to ten years.

Fortunately, their paper stops at third-order
approximations and does not continue on to the
corresponding fourth-order approximations –
Hynek’s scale has been extended to cover close
encounters of the fourth kind that would involve
the abduction of a human being by a UFO or its
occupants!

Mike Staunton

 references
Andersen, LBG. 2008. Option Pricing with Quadratic
Volatility: A Revisit. http://ssrn.com/abstract=1118399 or
http://dx.doi.org/10.2139/ssrn.1118399
Lorig, M, Pagliarani S, and Pascucci A. 2013. Implied Vol
for Any Local-Stochastic Vol Model
http://ssrn.com/abstract=2283874 or http://dx.doi
.org/10.2139/ssrn.2283874

wilmott magazine� 53

W

Option Base 0

Function vaEuroCallQLV(S#, K#, delta#, capL#,
capR#, Tyr#) As Double
Dim eL#, eR#, cR#, cL#
Dim K1#, K2#, S1#, S2#
Dim V#, SqrV#, d1p#, d1m#
Dim d2p#, d2m#

eL = Exp(capL)
eR = Exp(capR)
cR = (eR - S) / (eR - eL)
cL = (eL - S) / (eR - eL)
K1 = (eL - K) * cR
K2 = (eR - K) * cR
S1 = cL * (eR - K)
S2 = cL * (eL - K)

V = delta * delta * Tyr
SqrV = Sqr(V)
d1p = (Log(S1 / K1) + 0.5 * V) / SqrV
d1m = (Log(S1 / K1) - 0.5 * V) / SqrV
d2p = (Log(S2 / K2) + 0.5 * V) / SqrV
d2m = (Log(S2 / K2) - 0.5 * V) / SqrV

vaEuroCallQLV = K1 * vaCND(-d1m) - S2 * vaC-
ND(d2p) - S1 * vaCND(-d1p) + K2 * vaCND(d2m)
End Function

Function vaImpliedVolQLV(sk#, x#, delta#,
capL#, capR#, Tyr#) As Double
Dim kmx#, Lmx#, Rmx#, LmR#
Dim eL#, eR#, ex#, d2#
Dim a10#, a20#, a30#, sig0#
Dim sig02#, sig04#, sig1#, sig21#
Dim sig22#, sig2#, sig31#, sig32#
Dim sig3#

kmx = sk - x
Lmx = capL - x

Rmx = capR - x
LmR = capL - capR
eL = Exp(capL)
eR = Exp(capR)
ex = Exp(x)
d2 = delta * delta

a10 = d2 * (-Sinh(Lmx + Rmx) + Sinh(Lmx) +
Sinh(Rmx)) / (Cosh(LmR) - 1)
a20 = 0.25 * d2 * (2 * Cosh(Lmx + Rmx) -
Cosh(Lmx) - Cosh(Rmx)) * Csch(0.5 * LmR) *
Csch(0.5 * LmR)
a30 = eL * eR * d2 * (-4 * Sinh(Lmx + Rmx) +
Sinh(Lmx) + Sinh(Rmx)) / (3 * (eL - eR) * (eL -
eR))

sig0 = delta * (eR - ex) * (eL - ex) / (ex * (eR
- eL))
sig02 = sig0 * sig0
sig04 = sig02 * sig02

sig1 = 0.5 * a10 * kmx / sig0

sig21 = -Tyr * (12 + Tyr * sig02) * a10 * a10 /
(96 * sig0) + Tyr * sig0 * a20 / 6
sig22 = (-3 * a10 * a10 + 4 * sig02 * a20) * kmx
* kmx / (12 * sig0 * sig02)
sig2 = sig21 + sig22

sig31 = (-12 + Tyr * sig02) * a10 * a10 * a10 +
4 * sig02 * (8 + Tyr * sig02) * a10 * a20 - 48 *
sig04 * a30
sig32 = 3 * a10 * a10 * a10 - 5 * sig02 * a10 *
a20 + 3 * sig04 * a30
sig3 = -Tyr * sig31 * kmx / (192 * sig0 * sig02)
+ sig32 * kmx * kmx * kmx / (12 * sig0 * sig04)

vaImpliedVolQLV = sig0 + sig1 + sig2 + sig3
End Function

the VBA code

