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Anybody who writes exams or performs job interviews knows the 
value of questions. If they are based on true stories or statements, 
even better. To my delight this showed up in my Twitter timeline 
(Figure 1).

(Let us assume @FMTrader1 describes an at-the-money down-binary  
(or digital) option with one week (five business days; 5/252 years) to expiry.)

Starter for ten, Q1:  What is the initial price of the digital option? 
The payoff is either 1 or 0, thus 1 is the only case with a positive rate of 

return, so the price, p, must solve (1–p)/p = 0.7, i.e., p = 0.588.
Going into modeling, Q2: Is that price consistent with the Black–Scholes 

model? In the Black–Scholes model, the price of this at-the-money down- 
binary option is
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Figure 1: A delightful Twitter surprise
(Let us assume @FMTrader1 describes an at-the-money down-binary (or

digital) option with one week (five business days; 5/252 years) to expiry.)
Starter for ten, Q1:What is the initial price of the digital option?
The payoff is either 1 or 0, thus 1 is the only case with a positive rate of return, so

the price, p, must solve (1–p)/p = 0.7, i.e., p = 0.588.
Going into modeling, Q2: Is that price consistent with the Black–Scholes model?

In the Black–Scholes model, the price of this at-the-money down-binary option is
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which goes rapidly to 1∕2 for τ → 0, meaning that with one week to expiry
we’d need extreme parameter assumptions to generate a price of 0.588. So, in a
word: No. (The question can also be phrased such that it works for students who’ve
only heard of the standard binomial model, but either the question or the answer
becomes much less elegant.)

Feeling smug, I sent out the questions to people in the quantitative finance
community.

One of the recipients, let’s call him KwantDaddy, chipped in with Q3 (at 10:39):
Is it consistent with a jump diffusion model (à la the Merton model)? If the candidate
can answer this correctly, we will make an offer.

Rolf (at 11:16 pm): With a Poisson-jump-component, the distribution of the
change in (the log of) the stock price can be made asymmetric also at short
time-steps. The option price is the probability of the change being negative. So, a
negative average jump size should do the trick here.

KwantDaddy (at 11:21 pm): Is that your final answer?
Rolf (at 12:39 am; verbatim frommy email; sic): Aaaah, the prob’ of the goes to 0

like dt, and as option is binary, we get price effects the jump size not scaling by the
length of the time-step. I now think, no, the price still -> 0.5 as dt-> 0.

That answer seemed to satisfy KwantDaddy. And it is indeed correct as can be
seen by direct inspection of the call-price formula in the Merton jump-diffusion
model. An analysis (in which Uwe Wystup and Antoine Savine partook in various
ways) along the following lines then ensued.

Let’s say we construct a strike spread: Buy 1
𝜀𝜀
calls with strike K − 𝜀𝜀, sell 1

𝜀𝜀
calls

with strike K. As 𝜀𝜀 → 0, this approximates up-digital call payoff; see Figure 2.
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Figure 2: Strike spread approximating up-digital payoff

The cost of the strike spread is Call (K)−Call (K.𝜀𝜀)
𝜀𝜀

, so by definition of a derivative we
have

Up − Digital = 𝜕𝜕 Call
𝜕𝜕K

Any arbitrage-free call price –irrespective of which market or model may have
generated it –can be expressed via its implied Black–Scholes volatility, 𝜎𝜎imp (K),
where we make the strike-dependence explicit in the notation but suppress
everything else. Hence, Call(K) = CallB−S

(
K, 𝜎𝜎imp (K)

)
, and by the chain rule for

differentiation
Up − Digital = Φ(d2) + VegaB−S ∗ 𝜕𝜕𝜎𝜎imp
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term represents the slope of the implied volatility surface.1

Three things are noteworthy about Equation (*):

1. We have made no modeling assumptions (Black–Scholes or otherwise), nor
any assumptions about strike (like at-the-money) or expiry (like short).

2. For short expiries, the at-the-money Black–Scholes Vega behaves like
√
𝜏𝜏 .

This fairly slow convergence rate means that at small, but non-infinitesimal
expiries there is more flexibility to create digital options prices different from
1∕2 via a skew. For example, if rates are 0, spot = strike = 1 and options with
strikes (0.9, 1, 1.1) trade at implied volatilities (0.26, 0.2, 0.14), then a
one-week, at-the-money down-digital would have a price of 0.59.

3. For the short expiry limit not to be 1∕2, implied volatility must be quite wild;
it needs not only to diverge, but also to do so in a way bad enough to offset
the

√
𝜏𝜏-factor. However, applying this result is not quite as simple as it first

looks. Models (with SABR as an exception) are (for good reason) not
specified directly in terms of their implied volatilities; rather, we have to first
find the model’s options prices and study the behavior of the nonlinear,
non-explicit transformation that is implied volatility (in fact, its strike
derivative). For any diffusion-based model as well any finite intensity jump
model, a finite of limit can be shown to exist. However, it can also be shown
that arbitrage-free models do exist in which the

√
𝜏𝜏 → 0-limit of (*) is not 0

(see Roper & Rutkowski (2009) or Jacquier & She (2016)).
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So, social media isn’t all bad…
Anybody who writes exams or performs job interviews knows the value of

questions. If they are based on true stories or statements, even better. To my delight
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Figure 1: A delightful Twitter surprise
(Let us assume @FMTrader1 describes an at-the-money down-binary (or

digital) option with one week (five business days; 5/252 years) to expiry.)
Starter for ten, Q1:What is the initial price of the digital option?
The payoff is either 1 or 0, thus 1 is the only case with a positive rate of return, so

the price, p, must solve (1–p)/p = 0.7, i.e., p = 0.588.
Going into modeling, Q2: Is that price consistent with the Black–Scholes model?

In the Black–Scholes model, the price of this at-the-money down-binary option is

1 − Φ

(
𝜏𝜏
(
r − d − 𝜎𝜎2∕2

)

𝜎𝜎
√
𝜏𝜏

)
,

which goes rapidly to 1∕2 for τ → 0, meaning that with one week to expiry
we’d need extreme parameter assumptions to generate a price of 0.588. So, in a
word: No. (The question can also be phrased such that it works for students who’ve
only heard of the standard binomial model, but either the question or the answer
becomes much less elegant.)

Feeling smug, I sent out the questions to people in the quantitative finance
community.

One of the recipients, let’s call him KwantDaddy, chipped in with Q3 (at 10:39):
Is it consistent with a jump diffusion model (à la the Merton model)? If the candidate
can answer this correctly, we will make an offer.

Rolf (at 11:16 pm): With a Poisson-jump-component, the distribution of the
change in (the log of) the stock price can be made asymmetric also at short
time-steps. The option price is the probability of the change being negative. So, a
negative average jump size should do the trick here.

KwantDaddy (at 11:21 pm): Is that your final answer?
Rolf (at 12:39 am; verbatim frommy email; sic): Aaaah, the prob’ of the goes to 0

like dt, and as option is binary, we get price effects the jump size not scaling by the
length of the time-step. I now think, no, the price still -> 0.5 as dt-> 0.

That answer seemed to satisfy KwantDaddy. And it is indeed correct as can be
seen by direct inspection of the call-price formula in the Merton jump-diffusion
model. An analysis (in which Uwe Wystup and Antoine Savine partook in various
ways) along the following lines then ensued.

Let’s say we construct a strike spread: Buy 1
𝜀𝜀
calls with strike K − 𝜀𝜀, sell 1

𝜀𝜀
calls

with strike K. As 𝜀𝜀 → 0, this approximates up-digital call payoff; see Figure 2.
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This fairly slow convergence rate means that at small, but non-infinitesimal
expiries there is more flexibility to create digital options prices different from
1∕2 via a skew. For example, if rates are 0, spot = strike = 1 and options with
strikes (0.9, 1, 1.1) trade at implied volatilities (0.26, 0.2, 0.14), then a
one-week, at-the-money down-digital would have a price of 0.59.

3. For the short expiry limit not to be 1∕2, implied volatility must be quite wild;
it needs not only to diverge, but also to do so in a way bad enough to offset
the
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𝜏𝜏-factor. However, applying this result is not quite as simple as it first

looks. Models (with SABR as an exception) are (for good reason) not
specified directly in terms of their implied volatilities; rather, we have to first
find the model’s options prices and study the behavior of the nonlinear,
non-explicit transformation that is implied volatility (in fact, its strike
derivative). For any diffusion-based model as well any finite intensity jump
model, a finite of limit can be shown to exist. However, it can also be shown
that arbitrage-free models do exist in which the
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1∕2 via a skew. For example, if rates are 0, spot = strike = 1 and options with
strikes (0.9, 1, 1.1) trade at implied volatilities (0.26, 0.2, 0.14), then a
one-week, at-the-money down-digital would have a price of 0.59.

3. For the short expiry limit not to be 1∕2, implied volatility must be quite wild;
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. This fairly slow convergence rate means that at small, but non-in-
finitesimal expiries there is more flexibility to create digital options 
prices different from ½ via a skew in implied volatilities.2 For example, 
if rates are 0, spot = strike = 1 and options with strikes (0.9, 1, 1.1) trade 
at implied volatilities (0.26, 0.2, 0.14), then a one-week, at-the-money 
down-digital would have a price of 0.59. 

3)   For the short expiry limit not to be ½, implied volatility must be quite 
wild; it needs not only to diverge, but also to do so in a way bad enough 
to offset the 
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So, social media isn’t all bad…
Anybody who writes exams or performs job interviews knows the value of

questions. If they are based on true stories or statements, even better. To my delight
this showed up in my Twitter timeline (Figure 1).
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Figure 1: A delightful Twitter surprise
(Let us assume @FMTrader1 describes an at-the-money down-binary (or

digital) option with one week (five business days; 5/252 years) to expiry.)
Starter for ten, Q1:What is the initial price of the digital option?
The payoff is either 1 or 0, thus 1 is the only case with a positive rate of return, so

the price, p, must solve (1–p)/p = 0.7, i.e., p = 0.588.
Going into modeling, Q2: Is that price consistent with the Black–Scholes model?

In the Black–Scholes model, the price of this at-the-money down-binary option is

1 − Φ

(
𝜏𝜏
(
r − d − 𝜎𝜎2∕2

)

𝜎𝜎
√
𝜏𝜏

)
,

which goes rapidly to 1∕2 for τ → 0, meaning that with one week to expiry
we’d need extreme parameter assumptions to generate a price of 0.588. So, in a
word: No. (The question can also be phrased such that it works for students who’ve
only heard of the standard binomial model, but either the question or the answer
becomes much less elegant.)

Feeling smug, I sent out the questions to people in the quantitative finance
community.

One of the recipients, let’s call him KwantDaddy, chipped in with Q3 (at 10:39):
Is it consistent with a jump diffusion model (à la the Merton model)? If the candidate
can answer this correctly, we will make an offer.

Rolf (at 11:16 pm): With a Poisson-jump-component, the distribution of the
change in (the log of) the stock price can be made asymmetric also at short
time-steps. The option price is the probability of the change being negative. So, a
negative average jump size should do the trick here.

KwantDaddy (at 11:21 pm): Is that your final answer?
Rolf (at 12:39 am; verbatim frommy email; sic): Aaaah, the prob’ of the goes to 0

like dt, and as option is binary, we get price effects the jump size not scaling by the
length of the time-step. I now think, no, the price still -> 0.5 as dt-> 0.

That answer seemed to satisfy KwantDaddy. And it is indeed correct as can be
seen by direct inspection of the call-price formula in the Merton jump-diffusion
model. An analysis (in which Uwe Wystup and Antoine Savine partook in various
ways) along the following lines then ensued.

Let’s say we construct a strike spread: Buy 1
𝜀𝜀
calls with strike K − 𝜀𝜀, sell 1

𝜀𝜀
calls

with strike K. As 𝜀𝜀 → 0, this approximates up-digital call payoff; see Figure 2.
[Use high-res image supplied for Figure 2:

Poulsen_Fig_2_CallSpread_600dpi.jpg]
Figure 2: Strike spread approximating up-digital payoff

The cost of the strike spread is Call (K)−Call (K.𝜀𝜀)
𝜀𝜀

, so by definition of a derivative we
have

Up − Digital = 𝜕𝜕 Call
𝜕𝜕K

Any arbitrage-free call price –irrespective of which market or model may have
generated it –can be expressed via its implied Black–Scholes volatility, 𝜎𝜎imp (K),
where we make the strike-dependence explicit in the notation but suppress
everything else. Hence, Call(K) = CallB−S

(
K, 𝜎𝜎imp (K)

)
, and by the chain rule for

differentiation
Up − Digital = Φ(d2) + VegaB−S ∗ 𝜕𝜕𝜎𝜎imp

𝜕𝜕K
, (*)

Where, as usual, d1,2 =
ln
(

S
K

)
+
(
(r−d)+,− 1

2
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)
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√
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, VegaB−S = Se−
1
2
d21
√
𝜏𝜏 and the last

term represen
Three things are noteworthy about Equation (*):

1. We have made no modeling assumptions (Black–Scholes or otherwise), nor
any assumptions about strike (like at-the-money) or expiry (like short).

2. For short expiries, the at-the-money Black–Scholes Vega behaves like
√
𝜏𝜏 .

This fairly slow convergence rate means that at small, but non-infinitesimal
expiries there is more flexibility to create digital options prices different from
1∕2 via a skew. For example, if rates are 0, spot = strike = 1 and options with
strikes (0.9, 1, 1.1) trade at implied volatilities (0.26, 0.2, 0.14), then a
one-week, at-the-money down-digital would have a price of 0.59.

3. For the short expiry limit not to be 1∕2, implied volatility must be quite wild;
it needs not only to diverge, but also to do so in a way bad enough to offset
the

√
𝜏𝜏-factor. However, applying this result is not quite as simple as it first

looks. Models (with SABR as an exception) are (for good reason) not
specified directly in terms of their implied volatilities; rather, we have to first
find the model’s options prices and study the behavior of the nonlinear,
non-explicit transformation that is implied volatility (in fact, its strike
derivative). For any diffusion-based model as well any finite intensity jump
model, a finite of limit can be shown to exist. However, it can also be shown
that arbitrage-free models do exist in which the

√
𝜏𝜏 → 0-limit of (*) is not 0

(see Roper & Rutkowski (2009) or Jacquier & She (2016)).
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→0-limit of (*) is not 0 (see Roper & Rutkowski (2009) 
or Jacquier & She (2016)). Recently, rough volatility models have 
gained traction in quantitative finance circles; see, for instance, 
Gatheral, Jaisson & Rosenbaum (2014). In these models, the short term 
skew behaves as τH–1/2, where the so-called Hurst exponent is 
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ENDNOTE
1. Or, to be precise: the Black–Scholes implied volatility surface. Some sources, such as 
Andreasen and Huge (2012), prefer to work with Bachelier implied volatility. I guess 
this is for two reasons: partly because the Bachelier model is born with the negative 
skew that is predominant in interest rate options markets, and partly because con-
stant coefficient differential equations are simply simpler to work with.
2. At first thought, one might think that the short-expiry skew flattens out in diffusions 
model. But because the calculation of implied volatility serves as a magnifying glass 
for differences to the Black-Scholes model, this does not happen. However, careless 
discretization in numerical calculations may lead to spurious flattening. An example 
based on a true story: Simulation of the CEV-model with the log-Euler scheme and 
step-size dt = 1/12 gives a perfectly reasonable skew for 1-year options, but a comple-
tely flat skew for 1-month options.

 typically estimated at 0.1–0.2, meaning that while the skew explodes, 
the limit of (*) is still ½.


