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An Asymptotic FX Option Formula in
the Cross Currency Libor Market Model

lognormal LMM and lognormal FX model. Then, the method is applied to the dis-
placed diffusion LMM and the displaced diffusion FX model. Some numerical exam-
ples show that the derived formulae are sufficiently accurate for practical
applications.

Abstract
In this article, we introduce analytic approximation formulae for FX options in the
Libor market model (LMM). The method to derive the formulae is an asymptotic ex-
pansion technique introduced in Kawai [Kaw03]. We first apply the method to the 

1 Introduction
The Libor market model developed by Brace, Gatarek, and Musiela
[BGM97], Jamshidian [Jam97], Miltersen, Sandmann, and Sondermann
[MSS97] is one of the most popular interest rate models among both
academics and practitioners. It is interesting to use the model not
only for pure interest rate products but also for long-dated equity/FX
products or hybrid products. In this article, we focus on modeling
cross currency FX markets using the Libor market model, that is, the
cross currency hybrid LMM. The dynamics of the model are a straight-
forward extension of the standard LMM formulation, and considera-
tions regarding the specific choice of FX state variable (spot, forward,
rolling spot) are discussed in the literature [Sch02]. Whilst a variety of
accurate and efficient approximations for vanilla swaption pricing,
and thus model calibration are available [JR00, HW00, Kaw02, Kaw03],
very little has been published with respect to vanilla FX option ap-
proximations in cross-currency FX/interest rate models. The most no-
table exceptions are the very recent works by Osajima [Osa06] for a
Gaussian forward rate stochastic volatility setup, and [AM06a, AM06b]
for a cross-currency Libor market model without explicit skew on FX
and interest rates. Since European FX options are the most important
hedge instruments for the cross-currency exposure of FX/interest rate
contracts, and since the pricing of vanilla options using Monte Carlo
simulations for calibration purposes can be rather cumbersome, ana-
lytical approximations for FX plain vanilla option prices are highly de-
sirable. Using an asymptotic expansion method introduced in Kawai
[Kaw03], we derive an analytic approximation formula for European
FX options in the lognormal1 cross currency hybrid LMM. Then, we ex-
tend the method to the displaced diffusion cross currency hybrid
LMM.

In the next section, we briefly review our model setup. In section 3,
we present the FX option formula directly in terms of a strike-dependent
equivalent Black implied volatility for the lognormal LMM. Then, in sec-
tion 4, we extend our results to the extended cross-currency LMM in
which the domestic rates, the foreign rates, and the FX spot process all
are governed by a skew-generating local volatility process known as dis-
placed diffusion [Rub83]. Following that, we show some numerical re-
sults for comparison of analytics and Monte Carlo simulations. Finally,
we conclude.

2 The Cross-Currency Hybrid LMM
In the lognormal multi-currency LMM, the spot FX rate Q, the domestic
forward Libor rates f D

i and the foreign forward Libor rates f F
i evolve log-

normally according to the following stochastic differential equations in
the domestic TN forward measure.

• The spot FX rate

dQ

Q
= µQ dt + σQ dW̃Q , with

µQ = rD − rF − σQ

N−1∑
k=0

f D
k τ D

k

1 + f D
k τ D

k

σ D
k �Q ,f D

k
.

(2.1)

Note that the domestic and foreign short rates rD and rF are herein only
auxiliary concepts which we can convert into discrete forward rates once
we integrate over time. Alternatively, we can consider forward FX rates in
their own natural measure which removes any drift terms altogether,
and this is indeed the approach we take in the derivation of our formu-
lae in the appendix.
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1Note that we use the term lognormal often in an approximate sense. Strictly speaking, due to stochastic drift terms, marginal distributions of forward interest and FX rates are
not exactly lognormal.
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/K) + 1
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�(·) is the cumulative standard normal distribution function, and
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Also,

g0 = QTN
− K. (3.6)

Before we provide the details of the constants v1, c1, c2, c3 and c4, we need
to make some auxiliary definitions. First, consider the integrated covari-
ances between the processes:

cQ ,Q =
∫ TN

0
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(3.7)

Second, define the weights of initial forward Libor rates as follows.

wD
k = f D

k (0)τ D
k

1 + f D
k (0)τ D

k

, wF
k = f F

k (0)τ F
k

1 + f F
k (0)τ F

k

. (3.8)

yD
k = f D

k (0)τ D
k

(1 + f D
k (0)τ D

k )2
, yF

k = f F
k (0)τ F

k

(1 + f F
k (0)τ F

k )2
. (3.9)

Then define constant v1, vD
2,k, vF

2,k, vD
3,k and vF

3,k as follows.

v1 = cQ ,Q +
N−1∑

j,k=0

(wD
k wD
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k

,f D
j

+ wF
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k
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vD
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• The domestic forward Libor rates

df D
i

f D
i

= µD
i dt + σ D

i dW̃ D
i , with

µD
i = −σ D

i

N−1∑
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k τ D

k

σ D
k �f D

i
,f D

k
.

(2.2)

• The foreign forward Libor rates

df F
i

f F
i

= µF
i dt + σ F

i dW̃ F
i , (2.3)
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(2.4)

Correlations are incorporated by the fact that the individual standard
Wiener processes in equation (2.1), (2.2) and (2.3) satisfy

E
[
dW̃Q dW̃ D

i

] = �Q ,f D
i

dt, E
[
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i
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E
[
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= �f D

i
,f F

j
dt.

(2.5)

3 The Asymptotic FX Option Formula
Based on the dynamics of the FX rate and interest rates described above,
we can obtain an analytic approximate European FX option formula
using the asymptotic expansion method. The detailed derivation of the
formula can be found in appendix A. Indeed, the formula is in the form
of the European Black option formula and the resulting Black volatility
contains all the information of stochasticity of interest rates.

Let QTN
(0) be the forward FX rate for maturity TN , that is,

QTN
(0) = Q (0).

PF
TN

(0)

PD
TN

(0)
, (3.1)

where PD
TN

(0) and PF
TN

(0) are domestic and foreign TN discount factors 
respectively as seen at time 0, i.e. today, though, we shall in the following
often omit the explicit mentioning “(0)’’ for the sake of brevity. Then, ap-
proximate European FX option prices with strike K and maturity TN are
given by the following formulae.

• Call option

PD
TN

· [QTN
· �(h) − K · �(h − σBlack

√
TN)], (3.2)

• Put option

PD
TN

· [K · �(−h + σBlack

√
TN) − QTN

· �(−h)], (3.3)
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Now, the constants c1, c2, c3 , and c4 are given as follows.
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2QTN
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c4 = 1

2Q 2
TN

v2
1

N−1∑
k=0

(yD
k vD

2,kvD
3,k − yF

k vF
2,kvF

3,k), (3.16)

with

g1 = 1

6Q 2
TN

, (3.17)

g2 = 1

2Q 2
TN

v2
1

N−1∑
k=0

(yD
k vD2

2,k − yF
k vF2

2,k), (3.18)

g3 = 1

6Q 2
TN

v3
1

N−1∑
k=0

(yD
k vD2

2,k(3v1 + vD
2,k) − yF

k vF2

2,k(3v1 + vF
2,k)), (3.19)

d1 = 1

Q 2
TN

v3
1

[
v3

1 + 2v1

N−1∑
k=0

(
yD

k vD2

2,k − yF
k vF2

2,k

)

+
N−1∑

j,k=0

(
yD

k yD
j vD

2,kvD
2,jcf D

k
,f D

j
+ yF

k yF
j vF

2,kvF
2,jcf F

k
,f F

j

−2yD
k yF

j vD
2,kvF

2,jcf D
k

,f F
j

) ]
,

(3.20)

and
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4 The FX option Formula with Skew
This section extends the FX option formula when the spot FX and interest
rates follow displaced diffusion processes. We assume the following dy-
namics for the spot FX rate, the domestic forward Libor rates and the 
foreign forward Libor rates.

• The spot FX rate
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(4.1)

• The domestic forward Libor rates
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• The foreign forward Libor rates
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Then, in this extended framework the approximate European FX option
prices with strike K and maturity TN are given by the following formulae.

• Call option

PD
TN · (Q Disp

TN
· �(h) − KDisp · �(h − σDisp

√
TN)), (4.5)

• Put option
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Here

g0 = QTN
− K, Q Disp

TN
= QTN

+ sQ , KDisp = K + sQ ,

and β = QTN
/Q Disp

TN
.

(4.9)

Furthermore, we have new constants v1, c1, c2, c3 and c4. Let us first define
the displacement correction factor as

γ = 1 + 1

2
sQ

(
1

QTN
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Q

)
. (4.10)

Second, define the weights of initial forward Libor rates as follows.
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Then, define the constants v1, vD
2,k, vF

2,k, vD
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3,k, v4 and v5 as follows.
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Now, the constants c1, c2, c3 and c4 are given by:
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and
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5 Numerical Results
In this section, we present some numerical results showing the accuracy
of our analytic approximations by comparing with Monte Carlo 
valuations.

In Figure 1, we show the FX implied volatility profile for different ma-
turities from three months to fifteen years. Both the domestic and the
foreign currency’s interest rates were set to be flat at 5%, and the yield
curves were individually driven by a single factor, with equal levels of
volatility. All displacement coefficients s(·) were set to zero. As we can see,
this kind of symmetric setup gives rise to a moderate symmetric smile
that is generated solely by the fact that the FX rate’s instantaneous dy-
namics have a drift component that is stochastic in its own right in a
non-Gaussian fashion. In Figure 2, we repeated the same experiment
with different interest rate and volatility levels with fully factorised (i.e.
decorrelated) interest curve dynamics. Note that the difference in inter-
est rates and volatilities gives rise to a skew for FX implied volatilities, de-
spite the fact that absolute interest rate volatility levels in the two
currencies are approximately equal (∼1.2%).

In Figures 3 to 5, we show the analytical results in comparison to sim-
ulation data for the same overall scenario as in Figure 2, but for a range
of skew parameters sQ and different maturities. The FX displaced diffu-
sion parameter σQ was rescaled for different sQ according to
σQ = 10%·Q (0)/(Q (0) + sQ ) which gives rise to the appearance that the
implied volatility curves, with varying sQ , pivot about the point where
the FX spot is in relation to the respective FX forward. The last set of re-
sults shown in Figure 6 is for a market-given USD (domestic) and EUR (for-
eign) interest rate scenario as seen in the market for Friday October 13,
2006. Forward rate volatility term structures were calibrated to caplet
prices. Specifically, term structures of instantaneous volatility of 
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Figure 1: Numerical and analytical implied volatilities for different maturities T as a function of K/QT, i.e. strike divided by forward FX rate. fi
D = fi
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Figure 2: Numerical and analytical implied volatilities for different maturities T as a function of K/QT, i.e. strike divided by forward FX rate. fi
D = 6%, 
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Figure 3: Numerical and analytical 3 month (left) and 6 month (right) implied volatilities with different FX skew settings: (a) sQ = 8 log2(10)·Q (almost
normal), (b) sQ = Q (similar to square root distribution), (c) sQ = 0 (almost lognormal), (d) sQ = − log2(3/2) ·Q (positive skew). f D
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Figure 4: Numerical and analytical 1 year (left) and 3 year (right) implied volatilities with different FX skew settings: (a) sQ = 8 log2(10)·Q (almost 
normal), (b) sQ = Q (similar to square root distribution), (c) sQ = 0 (almost lognormal), (d) sQ = − log2(3/2) ·Q (positive skew). f D
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Figure 6: Numerical and analytical implied volatilities for market-calibrated USD (domestic) / EUR (foreign) rates and volatilities on Friday October 13,
2006.
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Figure 5: Numerical and analytical 5 year (left) and 7 year (right) implied volatilities with different FX skew settings: (a) sQ = 8 log2(10)·Q (almost 
normal), (b) sQ = Q (similar to square root distribution), (c) sQ = 0 (almost lognormal), (d) sQ = − log2(3/2) · Q (positive skew). f D

i = 6%, f F
i = 2%,

sD
i = sF

j = 0, σQ = 10%· Q
Q +sQ

, σ D
i = 20%, σ F

i = 60%, ρf D
i f D

j
= ρf F

i f F
j
= e −| ti−tj |/10 , ρf D

j
,f F

j
= ρQ ,f D

j
= ρQ ,f F

j
= 0.

9.0%

9.5%

10.0%

10.5%

11.0%

11.5%

12.0%

12.5%

13.0%

13.5%

75% 80% 85% 90% 95% 100% 105% 110% 115% 120% 125%

(a) Analytic (b) Analytic (c) Analytic (d) Analytic
(a) Monte Carlo (b) Monte Carlo (c) Monte Carlo (d) Monte Carlo

10.0%

10.5%

11.0%

11.5%

12.0%

12.5%

13.0%

13.5%

14.0%

14.5%

75% 80% 85% 90% 95% 100% 105% 110% 115% 120% 125%

(a) Analytic (b) Analytic (c) Analytic (d) Analytic
(a) Monte Carlo (b) Monte Carlo (c) Monte Carlo (d) Monte Carlo



^

Wilmott magazine 81

individual forward rates were defined by the parametric
Nelson-Siegel form

σ (t, T) = kT · [(a + b · (T − t)) · e−c·(T−t) + d] (5.1)

with

a = −0.074514253 b = 0.208715347 c = 0.606615724

d = 0.107550229 for USD (domestic)

a = −0.071209658 b = 0.196349282 c = 0.632737991

d = 0.100540646 for EUR (foreign)

(5.2)

for the instantaneous volatility of a forward rate expiring at T.
This leaves a scaling constant kT for each forward rate expiring
at T permitting calibration to market observable caplet prices.
The forward rates and kTi

scaling numbers are shown in 
Figure 7. Note that the Nelson-Siegel parametrisation of instan-
taneous volatility (5.1) with scaling constants kTi

means that
perfect time homogeneity of volatility is given when all of the
kTi

are identical. This is almost achieved for EUR, as can be seen in 
Figure 7, and a reasonably high degree of time homogeneity is also given
for USD since all the kTi

values are near unity. Correlations between inter-
est rates within each yield curve were given by

ρf D
i

f D
j
(t) = ρf F

i
f F
j
(t) = e− 1

5
|√ti−t−

√
tj−t|

. (5.3)

There was no cross-currency interest rate correlation, i.e. ρf D
i

f F
j

= 0.
Correlations between domestic interest rates and the spot FX rate was
ρQ ,f D

i
(t) = − 1

4 e− 1
5

√
ti−t and the correlation of the FX spot rate with foreign

forward rates was ρQ ,f F
i
(t) = 1

4 e− 1
5

√
ti−t . Displacements of forward rates

were individually set to sD
i = f D

i and sF
j = f F

j (similar to square root distri-
bution). The spot FX rate was undisplaced. The instantaneous FX driver
volatility shown in Figure 8 was calibrated as a piecewise constant func-
tion to match market observable plain vanilla option prices at the money
out to ten years, and extrapolated flat beyond that. As can be seen in 

figure 6, for a market-realistic scenario, the proposed approximations are
of superb quality even for long dated FX options.

6 Conclusion
In this article, we derived analytic approximation formulae for FX op-
tions in Libor market models. It turns out that the derived formulae are
accurate enough for use in practical applications. The asymptotic expan-
sion method was straightforwardly extended to cross currency FX mar-
kets form single currency interest markets, which was analyzed
previously by Kawai [Kaw03]. The method has proved to be very powerful
and flexible, whence it can be applied to other stochastic processes such
as other interest rate and stochastic volatility models.

A Derivation of the FX Option Formula
The formula is obtained using the asymptotic expansion method. The
method is fully explained in Kawai [Kaw03] by applying the method to a

European swaption pricing in the LMM. To derive the formu-
la, it is more convenient to express the stochastic differential
equation (2.1), (2.2) and (2.3) as being driven by 2N + 1 inde-
pendent standard Wiener processes W by decomposing the
covariance structure into orthogonal components.

• The spot FX rate
dQ

Q
= µQ dt + σ̃ �

Q̇
dW , with

µQ = rD − rF − σQ

N−1∑
k=0

f D
k τ D

k

1 + f D
k τ D

k

σ D
k �Q ,f D

k
.

(A.1)

• The domestic forward rates

df D
i

f D
i

= µD
i dt + σ̃ D�

i · dW , with
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Figure 7: Forward rates (left axis) and kTi
volatility scaling factors (right axis) from 

calibration to market on Friday October 13, 2006, as used for the results shown in 
Figure 6.
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Figure 8: Instantaneous FX volatility function σQ (t) calibrated to market observable
plain vanilla option prices at the money on Friday October 13, 2006, as used for the
results shown in Figure 6.
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µD
i = −σ D

i

N−1∑
k=i+1

f D
k τ D

k

1 + f D
k τ D

k

σ D
k �f D

i
,f D

k
. (A.2)

• The foreign forward rates

df F
i

f F
i

= µF
i dt + σ̃ F�

i · dW , (A.3)

with

µF
i = σ F

i

(
−σQ �Q ,f F

i
+

i∑
k=0

f F
k τ F

k

1 + f F
k τ F

k

σ F
k �f F

i
,f F

k

−
N−1∑
k=0

f D
k τ D

k

1 + f D
k τ D

k

σ D
k �f D

i
,f F

k

)
, (A.4)

where σ̃Q , σ̃ D
i and σ̃ F

i are 2N + 1 dimensional vectors satisfying

σ̃ �
Q · σ̃Q = σ 2

Q , σ̃ �
Q · σ̃ D

i = σQ σ D
i �Q ,f D

i
, σ̃ �

Q · σ̃ F
i = σQ σ F

i �Q ,f F
i
, (A.5)

σ̃ D�
i · σ̃ D

j = σ D
i σ D

j �f D
i

,f D
j
, σ̃ F�

i · σ̃ F
j = σ F

i σ F
j �f F

i
,f F

j
, σ̃ D�

i · σ̃ F
j = σ D

i σ F
j �f D

i
,f F

j
.

(A.6)

From equations (A.1), (A.2) and (A.3), the TN -forward FX rate as defined in
(3.1) follows

dQTN
(t)

QTN
(t)

= (σ̃Q (t) + η(t))� · dWt, with

η =
N−1∑
k=0

f D
k τ D

k

1 + f D
k τ D

k

σ̃ D
k −

N−1∑
k=0

f F
k τ F

k

1 + f F
k τ F

k

σ̃ F
k .

(A.7)

Naturally, it is a martingale in the TN measure which obviates any consid-
erations regarding the domestic and foreign short rates we may have had
with respect to (2.1) and similar.

Now, as is usual with asymptotic expansions, we insert a smallness
parameter ε into equation (A.7) to obtain

Q (ε)

TN
(TN) = QTN

(0) + ε

TN∫
0

Q (ε)

TN
(t)(σ̃Q (t) + η(ε)(t))� · dWt, (A.8)

with

η(ε) =
N−1∑
k=0

f D(ε )

k τ D
k

1 + f D(ε )

k τ D
k

σ̃ D
k −

N−1∑
k=0

f F(ε )

k τ F
k

1 + f F(ε )

k τ F
k

σ̃ F
k . (A.9)

Note that the superscript (ε) is not meant to indicate the ε-th derivative
but instead denotes dependence on ε. Here, perturbed interest rates 
follow

f D(ε )

i = f D
i (0) + ε

TN∫
0

f D
i (0)µD(0)

i du + ε

TN∫
0

f D(ε )

i σ̃ D�
i · dW , (A.10)

with

µD(0)

i = −σ D
i

N−1∑
k=i+1

f D
k (0)τ D

k

1 + f D
k (0)τ D

k

σ D
k �fi ,fk

. (A.11)

and

f F(ε )

i = f F
i (0) + ε

TN∫
0

f F
i (0)µF(0)

i du + ε

TN∫
0

f F(ε )

i σ̃ F�
i · dW , (A.12)

as well as

µF(0)

i = σ F
i

(
i∑

k=0

f F
k (0)τ F

k

1 + f F
k (0)τ F

k

σ F
k �f F

i
,f F

k
− σQ �f F

i
,Q

−
N−1∑
k=0

f D
k (0)τ D

k

1 + f D
k (0)τ D

k

σ D
k �f F

i
,fk

)
.

(A.13)

Notice that the drift terms of the interest rates are approximated deter-
ministically using initial interest rates as a consequence of the Itô-Taylor
expansions in (A.8), (A.10), and (A.12). This makes both the derivation and
the resulting formula simpler, yet it remains accurate. By applying a
Taylor series expansion in ε to the forward FX rate (A.8), we obtain a
third-order asymptotic expansion.

Q (ε)

TN
(TN) = QTN

(0) + ε
∂Q (ε)

∂ε

∣∣∣∣
ε=0

+ 1

2
ε2 ∂2Q (ε)

∂ε2

∣∣∣∣
ε=0

+ 1

6
ε3 ∂3Q (ε)

∂ε3

∣∣∣∣
ε=0

+ O(ε4),

(A.14)

where

∂Q (ε)

∂ε

∣∣∣∣
ε=0

= QTN
(0)

TN∫
0

(σ̃Q + η(0))� · dWu, (A.15)

∂2Q (ε)

∂ε2

∣∣∣∣
ε=0

= 2QTN
(0)

TN∫
0

u1∫
0

(σ̃Q + η(0))� · dWu2
(σ̃Q + η(0))� · dWu1 (A.16)

+ 2QTN
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k )2
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 .
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(A.17)

Note that in the above expressions many dependencies on u3, u2, or u1

are not mentioned explicitly for the sake of legibility.
Next, define X(ε) as

X(ε) = 1

ε

(
Q (ε)

TN
(TN) − QTN

(0)

)
. (A.18)

Then we can find an asymptotic expansion for the density function of X(ε)

as
f (x)

X (x) = ϕv0
(x) + ε
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(A.19)

where ϕv0
(x) is the Gaussian density function with mean 0 and variance

v0 = Q 2
TN

v1 (A.20)

and v1 defined in (3.10), and c1, c2, c3 and c4 are constants defined in
(3.13), (3.14), (3.15) and (3.16) respectively. As a result, letting ε = 1, it fol-
lows that an asymptotic FX call option price is

PD
TN

· [G(v0) − 2c1v0g0G′(v0) + 2c2
1v2

0g2
0G′′(v0)

+ v0(c2g2
0 + c3v0 + 2c3v0)G

′(v0)],
(A.21)

where the function G(x) is defined as

G(x) = g0�

(
g0√

x

)
+ x

e−g2
0 /2x

√
2πx

, with g0 = QTN
− K. (A.22)

Since the dynamics of the forward FX rate is close to lognormal, a further
procedure2 that matches coefficients to an analogous expansion for the
standard Black model within the same order in ε improves the accuracy.
Finally, we obtain the FX option formulae (3.2) and (3.3).

B Derivation of the FX Option Formula
with Skew
From the SDE (4.1), (4.2) and (4.3), the forward FX rate follows
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=
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k .

(B.1)

Now, by allowing a small perturbation ε, we can rewrite the SDE (B.1) as
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(TN) = QTN

(0) + ε

∫ TN

0
Q (ε)

TN

((
1 + SQ

Q

)
σ̃Q + η(ε)

)�
· dW , (B.2)

with
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The perturbed spot FX rate follows

Q (ε) = Q (0) +
∫ TN

0
µ

(ε)

Q du + ε

∫ TN

0
(σ̃Q )�dW , (B.4)

with

TECHNICAL ARTICLE 3

2whose details are explained in [Kaw03].
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µ
(ε)
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and

Q (0) = Q (0)
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Here, perturbed interest rates follow
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as well as

µF(0)

i = σ F
i

(
i∑

k=0

(f F
k (0) + sF

k)τ
F
k

1 + f F
k (0)τ F

k

σ F
k �f F

i
,f F

k

−σQ �f F
i
,Q −

N−1∑
k=0

(f D
k (0) + sD

k )τ D
k

1 + f D
k (0)τ D

k

σ D
k �f F

i
,fk

)
.

(B.10)

Applying an asymptotic method in this setting, we obtain the FX option
formula (4.5) and (4.6).
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