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1 Model Analysis
This article analyses Davis and Lo (2001b) enhanced risk model, which is
a dynamic version of the popular market model of infectious defaults of
Davis and Lo (2001a). For all details regarding the enhanced risk model
we refer the reader to the original article of Davis and Lo (2001b). In this
article we review the main conclusions of the model and obtain a closed-
form solution that should be valuable in practice. 

As shown in the original article, the model reduces to a set of simul-
taneous ordinary differential equations (ODEs). Solving this system of
equations numerically is a challenging problem for large diversified
portfolios. We propose an alternative method of dealing with the prob-
lem. In addition to this, we analyse the behaviour of the portfolio in the
limit of a large relaxation time and establish useful results that give thor-
ough understanding of the underlying dynamics.

The enhanced risk model of Davis and Lo (2001b) is a two-state
Markovian model, where a bond portfolio migrates back and forth
between normal and enhanced risk states over time. Initially the bond
portfolio is in the normal risk state, where all bonds have the same
default intensity λ ≥ 0. Following a default of a single obligor, the port-
folio migrates to the enhanced risk state and all the remaining bonds
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become more risky. In this state  the default intensity rate is increased to
aλ, where a > 1. After an exponentially-distributed period of time char-
acterised by the parameter µ ≥ 0, the portfolio returns to the normal
risk state. One may think of the enhanced state as a period of crisis or
market turbulence, when contagious defaults become problematic in a
portfolio context.

An attractive feature of the enhanced risk model is that the migra-
tion of the portfolio between the two states is described endogeneously
through the default event trigger by a single obligor, rather than being
related to some vaguely defined set of external market factors. 

As shown by Davis and Lo (2001b) the portfolio follows a Markovian
process on the state space

E = {(i, k) : i ∈ {0, 1}, k ∈ {0, 1, . . . , N}}
where (i = 0,1) denotes the normal and enhanced risk states respectively
and k is a number of undefaulted securities. 

The initial position for the portfolio is (0, N). Let pi
k(t) denote the

probability of being in state (i, k) at time t. It is easy to show that the
portfolio dynamics (see Figure 1) is described by the forward matrix
equation for the probability density, which is equivalent to the following
set of ODEs,
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dp1
k

dt
= p0

k+1λ(k + 1) + p1
k+1aλ(k + 1) − p1

k (µ + aλk)

dp0
k

dt
= −p0

k λk + p1
k µ

(1)

In order to find the forward density function, one needs to solve the set
of 2N equations with the initial condition p0

N(0) = 1, p0
k (0) = 0, k < N

and p1
k = 0, k ≤ N. The authors suggested employing a numerical inte-

gration procedure (e.g., Runge-Kutta method) to tackle this set of equa-
tions. We feel that for large or even medium values of N this approach
may be computationally intensive. In addition, numerical methods usu-
ally provide only a limited understanding of the underlying dynamics.
We will exploit an alternative methodology to finding a solution for this
problem, which is outlined in Section 2. In Section 3 we develop approxi-
mation methods valid in the limit of fast relaxation times (when the total
time spent in the enhanced state is short relative to the time spent in the
normal state). In Section 4 we consider numerical results.

2 Numerical Approach
Specifically, we will use the Master equation approach for the survival
probability P(t, i, k), where i represents the state and k is the number of
undefaulted bonds (out of the initial N) at time t. The survival probability
satisfies the following system of Master equations

P(t + �t, 0, k) = P(t, 0, k)(1 − λ�t)k + P(t, 1, k)µ�t

P(t + �t, 1, k) = P(t, 0, k + 1)Ck+1
1 λ�t(1 − λ�t)k

+ P(t, 1, k + 1)Ck+1
1 aλ�t(1 − aλ�t)k

+ P(t, 1, k)(1 − aλ�t)k(1 − µ�t)

where �t is a small time step.
The differential form of the Master equation can be obtained by

expanding the left hand side of the system and retaining terms of the

first order of magnitude in �t; this yields

∂P

∂ t
(t, 0, k) = −P(t, 0, k)λk + P(t, 1, k)µ

∂P

∂ t
(t, 1, k) = P(t, 0, k + 1)λ(k + 1) + P(t, 1, k + 1)aλ(k + 1)

− P(t, 1, k)(aλk + µ)

P(0, 0, k) = δkN , P(0, 1, k) = 0, ∀k

where δkN is the Kronecker symbol reflecting that initially we had exactly
N bonds in our portfolio. To resolve this system of equations we use the
method of moment generating functions. We introduce

φ−(s, t) =
N∑

k=0

skP(t, 0, k), 0 ≤ s ≤ 1

φ+(s, t) =
N∑

k=0

skP(t, 1, k), 0 ≤ s ≤ 1

φ(s, t) =
N∑

k=0

skP(t, k), where P(t, k) = P(t, 0, k) + P(t, 1, k)

φ(s, t) = φ−(s, t) + φ+(s, t)

In terms of the moment generating functions we can write the Master
equations as follows

∂φ

∂ t

−
= −λs

∂φ

∂s

−
+ µφ+ (2)

∂φ

∂ t

+
= −λa(s − 1)

∂φ

∂s

+
+ λ

∂φ

∂s

−
− µφ+ (3)

φ+(s, 0) = 0, φ−(s, 0) = sN

This hyperbolic system has two distinct families of characteristics

characteristic 1: s1(t) = sT e−λ(T−t), t ∈ [0, T]

characteristic 2: s2(t) = 1 − (1 − sT)e
−aλ(T−t), t ∈ [0, T]

which connect any point (sT , T) (0 ≤ sT ≤ 1) in the plane with initial con-
ditions. Along these characteristics the hyperbolic system transforms
into the system of ODEs

e−µt d

dt
{eµtφ+(s1(t), t)} = d

dt
{φ(s1(t), t)}

d

dt
{φ(s2(t), t)} = −(a − 1)(1 − s2(t))e

−µt d

dt
{eµtφ+(s2(t), t)}

This can be easily integrated numerically. Indeed, if the system had constant
(or slowly varying) coefficients, K1 = e−µt and K2 = −(a − 1)(1 − s2(t))e−µt ,
then integration along the characteristics would yield

^
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Securities Undefaulted, k

ENHANCED STATE i = 1

NORMAL STATE i = 0

(k+1)λ

a(k+1)λ

µ

(0,k+1)  to   (1,k)    { prob = (k+1)λ∆t }

(1,k+1)  to   (1,k)    { prob = a(k+1)λ∆t }

(1,k)      to   (0,k)    { prob = µ∆t }

k+1 k 1 0

Figure 1: Possible Transitions
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K1{eµTφ+(sT , T) − φ+(s1(0), 0)} = {φ(sT , T) − φ(s1(0), 0)}
{φ(sT , T) − φ(s2(0), 0)} = K2{eµTφ+(sT , T) − φ+(s2(0), 0)}

where s1(0) = sT e−λT , s2(0) = 1 − (1 − sT)e
−aλT

(4)

Since φ+(s, 0) = 0 and φ(s, 0) = sN , we have a simple system of linear
equations for the unknowns φ+(sT , T) and φ(sT , T), which has a non-
degenerate determinant.

In reality, however, (like in our case) K1 = K1(t) and K2 = K2(t) can not
always be assumed slowly varying functions on [0, T]. Usually in such a case
we can consider a partition of the time segment 0 ≤ t1 ≤ t2 ≤ t3 ≤ . . . ≤ T,
assuming that for each subsegment [tk, tk+1] the coefficients are slowly vary-
ing and can be proxied by their mid-values. Hence, results (4) can be applied
for each subsegment. Using the backward induction principle we connect
the point (sT , T) with the initial conditions as shown in Figure 2. In our
problem (for times of the order of O(1/λ)) we may just need several interme-
diate steps to obtain a desired accuracy. The methodology for solving hyper-
bolic systems is well known, see for instance Ockendon et al. (1999, p.49).
Once we have obtained φ(sT , T) for various values of sT (ideally we need N
data points) we can fit a standard Lagrange polynomial. If the number of
points is less than N, we can use a coarser grid for our probability density
function dividing the space of outcomes into buckets, rather than register-
ing each individual default. In any case the coefficients of this interpolation
polynomial are the survival probabilities we are looking for. Hence, we have
replaced a numerical integration approach proposed in the original article
by a polynomial fitting procedure. Remember that numerical integration of
(1) may require very fine time step as N gets large, due to the increase in the
magnitude of the coefficients in this set of simultaneous ODEs.

Now we outline how a coarser grid can be constructed. Consider an
example where we have a well diversified portfolio consisting of N = 200
exchangeable bonds. Building an interpolation polynomial of the degree N
is going to be hard, whichever approach is used. Let us assume that we are
trying to evaluate the likelihood of the first loss tranche being completely
wiped out. The thickness of the first loss tranche is assumed to be 5%. This

tranche will be wiped out if 10 bonds default over a given period of time
assuming zero recovery value. Hence, it is not necessary to consider each
default individually, instead we can consider them in increments of 10.
Therefore, we need to build a polynomial of the degree 20 only, which is
not a difficult problem. Let {sT(i)}20

i=1 be our set of 20 points, where we have
evaluated the original moment generating function φN(sT(i), T) that corre-
sponds to the N-point distribution. The reduced moment generating func-
tion that correspond to the 20-bucket distribution φ20(s, T) would satisfy
the following conditions (based on the scaling principle)

φ20(sT(i)
10 , T) = φN(sT(i), T) for i = 1, 20

Constructing the interpolation polynomial φ20(s, T) based on 20 points is
trivial.

3 Approximation Methods
As mentioned before, our bond portfolio follows a Markovian process on
the extended space E. In other words, at each moment in time we have to
register both the state of the portfolio (normal or enhanced) and the
number of bonds remaining in the portfolio. When we price various con-
tingent claims (e.g., collaterised debt obligations, etc.), the knowledge of
the portfolio state at maturity of the product is irrelevant in most cir-
cumstances, as the payoff function has no explicit state dependence. 

Intuitively, we would favour such values of the parameters (λ, µ) that
the total time spent in the enhanced state is relatively short when com-
pared to the time spent in the normal state. We reckon that the
enhanced state should be associated with periods of market turbulence,
when correlated defaults become particularly problematic, rather than
being another regular state. We can anticipate that this would occur
when the relaxation time between the states µ−1 is much smaller than
the default time λ−1. In other words, we require that

µ

λ
� 1 (5)

Let φ̂+ and φ̂− be typical values  for φ+ and φ− , to be exact,
say φ̂+ = φ+(1, λ−1) and φ̂− = φ−(1, λ−1). We assume that
the balance between the ratio of the relaxation parameters
and times spent in both states takes place, so that

µ

λ
· φ̂+

φ̂− = O(1) (6)

where O(1) denotes an order one variable. Indeed, as µ
increases (a faster relaxation time) we are going to spent less
time in the enhanced state. As λ decreases (less defaults) we
are going to spent less time in the enhanced state again. We
will construct a solution that satisfies this balance criteria
by means of an asymptotic expansion.

As we discussed earlier, the portfolio process is Markovian
on the extended space E, but it will not be Markovian if we
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Figure 2: Solving the system by means of characteristics (a two-step approach
is illustrated)
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exclude information regarding the state. Asymptotic analyses induced by
condition (5) effectively constructs a Markovian approximation to a non-
Markovian process valid for fast relaxation times (short term memory
effects are neglected). In physics this approach is known as Adiabatic
Elimination of Fast Variables, for instance, see Gardiner (1992, p.195) where
a similar approach is applied to Langevin’s equation.

Further we proceed with original system of equations (2) (3). We intro-
duce the non-dimensional time τ = λt. By adding up (2) and (3) we obtain
the equation for φ that we ultimately want to solve for

∂φ

∂τ
+ (s − 1)

∂φ

∂s
= −(a − 1)(s − 1)

∂φ

∂s

+
(7)

φ+ = λ

µ

(
∂φ

∂τ

−
+ s

∂φ

∂s

−)
(8)

φ− = φ − φ+ (9)

To be rigorous with our asymptotic expansion, we have to scale φ+ and
φ− with their typical values. For the ease of the exposition, however, we
will do this implicitly, as the balance is obvious in our case. 

Now we pose a formal Poincaré expansions for the moment generat-
ing functions

φ(s, t) = φ0(s, t) + λ

µ
φ1(s, t) +

(
λ

µ

)2

φ2(s, t) + · · ·

φ+(s, t) = φ+
0 (s, t) + λ

µ
φ+

1 (s, t) +
(

λ

µ

)2

φ+
2 (s, t) + · · ·

φ−(s, t) = φ−
0 (s, t) + λ

µ
φ−

1 (s, t) +
(

λ

µ

)2

φ−
2 (s, t) + · · ·

The balance equation (6) and equation (9) imply that the leading order
term φ+

0 (s, t) ≡ 0 and φ0(s, t) ≡ φ−
0 (s, t). Equation (7) yields the leading

order moment generating function,

∂φ0

∂τ
+ (s − 1)

∂φ0

∂s
= 0, with φ0(s, 0) = sN (10)

Hence,

φ0(s, τ ) = [1 − (1 − s)e−τ ]N (11)

This is the moment generating function for the binomial distribution. In
other words, condition (5) ensures that to the leading order of magnitude
our portfolio process follows a binomial distribution assuming inde-
pendence of obligors each of which has a constant default intensity λ.

Next we are going to find out correcting terms to our expansion.
From (8) taking into account that φ0(s, t) ≡ φ−

0 (s, t) we obtain

φ+
1 = ∂φ0

∂τ
+ s

∂φ0

∂s
= ∂φ0

∂s

The latter equality follows from equation (10). Now we substitute for φ+
1

in equation (7) to obtain

∂φ1

∂τ
+ (s − 1)

∂φ1

∂s
= −(a − 1)(s − 1)

∂2φ0

∂s2
, with φ1(s, 0) = 0 (12)

This equation will be easily solved below. 
The directional derivative of the leading order moment generating

function, φ0 = φ0(s, τ ), is zero along the characteristics, as follows from
(10). Equation (12) implies that the directional derivative of the first order
term φ1 = φ1(s, τ ) is driven by the difference of the intensities of the nor-
mal and enhanced states, a − 1, and the gamma of the moment generating
function of the binomial distribution. Obviously, if a = 1, we can ignore
higher order terms due to the initial condition φk(s, 0) = 0 for k ≥ 1.

We look for the solution of equation (12) in the form of a polynomial
of the degree N,

φ1(s, τ ) =
N∑

k=0

ak(τ )(s − 1)k

By direct substitution we find that

ak(τ ) = (a − 1)CN
k k(N − k){e−(k+1)τ − e−kτ }

Hence, we have found the first order approximation term. Likewise high-
er order terms can be obtained from the iterative procedure described
below for m ≥ 1. 

We know φ1 and φ+
1 . From the first equation below we calculate φ−

1 ,
then the second equation yields φ+

2 and finally the last equation enables
us to obtain φ2 . In principle we can repeat this procedure until the
desired accuracy is achieved.

φ−
m = φm − φ+

m

φ+
m+1 = ∂φ−

m

∂τ
+ s

∂φ−
m

∂s
∂φm

∂τ
+ (s − 1)

∂φm

∂s
= −(a − 1)(s − 1)

∂φ+
m

∂s

In this article for simplicity of the exposition we will stop at the first
order of approximation, as it provides a good understanding of the
dynamics of the underlying system. Hence,

φ(s, t) =
N∑

k=0

CN
k

{
e−λkt + λ

µ
(a − 1)k(N − k)[e−λ(k+1)t − e−λkt ]

}

(s − 1)k + O

(
λ

µ

)2

and the survival probability of having m bonds not having defaulted out
of the total N over the time period [0, t] is given by

P(N, m, t) ≈ CN
m

N−m∑
k=0

CN−m
k (−1)kck+m(t), where

cj(t) =
{

e−λjt + λ

µ
(a − 1)j(N − j)[e−λ(j+1)t − e−λjt ]

} (13)
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One may notice that P(N, N, t) = e−λNt does not depend on the parameters
related to the enhanced risk state, a and µ.

4 Results
In Figure 3, we illustrate P(N, m, t) for both the classical Binomial
(a = 1) and enhanced risk (13) distributions. We observe the tail widen-
ing effect, as we increase the state enhancement parameter a. At the
same time, however, we have to readjust the intensity parameter λ, in

order for both distributions to have the same expected value. The
widening of the tail is closely related to periods of market turbulence,
when correlated defaults can impact most senior tranches of a CDO. If λ
is kept constant, while a is increased, then both the mean and the vari-
ance of the distribution would increase to ref lect higher realised
defaults over time. We have the following approximation for the
expected portfolio value

E(�) ≈ Ne−λt

(
1 − λ

µ
(N − 1)(a − 1)(1 − e−λt)

)

In Figure 4 we illustrate E(�) as time elapses. For
comparison we also show the expected portfolio
value assuming that portfolio stays either in the
normal or enhanced states all the time. Obviously
in the normal risk-state portfolio’s expected value
is N exp(−λt) and in the enchanced risk state
(assuming that portfolio stays there all the time) is
N exp(−aλt). As expected, the actual portfolio
value lies between these two boundaries, depend-
ing upon the magnitude of the relaxation para-
meter µ.

Further, we consider our asymptotic expan-
sion as N gets large. In fact, for large portfolios the
probability of the default event (triggered by any
obligor from the portfolio) increases linearly with
N. Hence, for a constant relaxation parameter µ,
the portfolio will spend most of the time in the
enhanced state. In other words, the model would
penalise large portfolios. In order to resolve this
issue we would have to scale µ with the portfolio
size by introducing µ̂ = µ/N. Therefore, we really
have to require that µ̂/λ � 1.

Similarly from the moment generating function we
find portfolio’s variance,

VaR(�) ≈ N(N − 1)e−2λt

(
1 − 2

λ

µ̂

N − 2

N
(a − 1)(1 − e−λt)

)

+ E(�) − E(�)2

In Figure 5 we observe that portfolio’s variance increases,
as the enhancement parameter a gets larger. Here, as in
Figure 3, we readjust λ accordingly, in order to make dis-
tributions comparable. The increase in the portfolio vari-
ance is mostly a reflection of the tail widening effect
observed in Figure 3. 

Finally, in Figure 6 we compare the asymptotical
solution of Section 3 against the numerical solution of
Section 2. We can see that the asymptotical solution
developed in this article provides a good approximation
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and hence is a valuable tool for pricing exotic
credit structures in a dynamical framework.

5 Conclusions
In this article we have conducted a compre-
hensive analyses of the enhanced risk model.
We have proposed an efficient numerical
method for finding the survival probability.
In addition to this we have obtained a closed-
form asymptotical solution valid in the limit
of fast relaxation times. This approximation
can be very useful in practice to assess the
impact of various parameters on the dynam-
ics of the portfolio. We have shown that the
relaxation parameter µ should be also related
to the size of the portfolio and not only to the
speed of the market recovery. This becomes
particularly important when large diversi-
fied portfolios are considered, as keeping µ
fixed, while increasing the size of the port-
folio would unduly penalise diversification
benefits.
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Figure 5: Portfolio Variance

1. The values of the characteristic function for s = 1 imply the
probability of being in that state at a given moment of time.
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