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1. Introduction
In an effort to improve credit risk management, financial institutions
have developed various measures to manage their exposure to counter-
party risk. One important measure of counterparty risk is potential fu-
ture exposure (PFE), which is a percentile (typically 95 or 99 percent) of
the distribution of exposures at any particular future date. Credit expo-
sure is the amount a bank can potentially lose in the event that one of its
counterparties defaults. The measurement of exposure for derivative
products is very important because it is used not only to set up trading
limits but also as an essential input to economic and regulatory capital.
The internal economic capital models used by most technologically ad-
vanced banks require the calculation of the distribution of the exposure
at specified future times. For banks intending to use the internal model
method in the new Basel II revised framework on trading activities Basel
Committee (2005), specific exposure measures such as the expected ex-
posure (EE) and expected positive exposure (EPE)1 are required in the cal-
culation of the regulatory capital.

This paper focuses on the methodology for calculating the potential
future exposure of path-dependent derivative instruments. Unlike loan
products, the value of derivatives and other market-driven contracts can
change significantly over time as a result of market movements. This
may lead to a potential credit exposure with the trading counterparty
should it default in the future and its transactions have a positive mar-
ket value to the bank. Most banks use a variety of methods to manage
such risk at the counterparty level, which may include limits on poten-
tial exposures, netting, collateral agreements, and early termination
agreements. Since most credit limits are based on potential exposure, it
is important for a bank to have robust and accurate risk models, as well
as systems infrastructure, to quantify the potential exposures of its deriv-
atives positions. 

The potential exposure at a future time is defined in this paper as
some percentile on the distribution of instrument priced at today for
many different scenarios at the future time, and it is not on the distribu-
tion of instrument prices realized at the future time. There are two main
components in calculating credit exposures on a transaction: scenario
generation and instrument valuation. The scenario generation is a simu-
lation process that generates the future scenarios of various market risk
factors at different future times (or simulation dates as termed in this
paper). Similar to front office transaction pricing, exposure calculation
also requires a valuation model in order to calculate the value of a transac-
tion over different times in the future. The similarity stops here, however,
as the calculation of credit exposure requires modeling that may not be
consistent with the front office valuation model, particularly the scenario
generation process. For credit exposure, our concern is on the potential fu-
ture market value of a transaction. Future market scenarios are usually
generated using evolution models of the underlying risk factors under the
“real measure” instead of the “risk-neutral” pricing measure used in the
calibration of the front office models. Furthermore, the calculation of
credit exposure requires a valuation model to value the trade not only at
the current time, but also to “Value-at-Future” (VaF)2 or price the trade con-
sistently across different times in the future (see illustration below). 

The calculation of credit exposure relies heavily on simulation3, espe-
cially when counterparty’s portfolio is dependent on multiple risk factors.
Because of the computational intensity required to calculate counterparty
exposures, especially for a bank with a large portfolio, compromises are
usually made with regards to the number of simulation times or the num-
ber of scenarios. For example, the simulation times (also called “time
buckets”) used by most banks to calculate credit exposure usually have
daily or weekly intervals up to a month, then monthly up to a year and
yearly up to five years, etc. We generate market scenarios across these sim-
ulation times. The basic problem in valuing path-dependent instruments
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in this framework is that we simulate future scenarios only at discrete set of
dates, while the value of the instrument may depend on the full continu-
ous path prior to the simulation date (or a discrete set of dates different
from the given set of simulation dates). Therefore, the valuation models
used to calculate exposure could be very different from the front-office
pricing models. For credit exposure calculations, pricing is not an end in it-
self. What is important is the distribution of instrument values (under the
real measure) at different times in the future. The valuation models need
to be optimized in order to perform sufficiently large number of calcula-
tions required to obtain such distribution. Term structure models4 such as
HW, HJM and BGM are not adequate for exposure calculation because these
models require either Monte-Carlo or lattice-based modeling, which is
computationally intensive. Furthermore, the standard valuation models
used to price the instruments for mark-to-market are not applicable for cal-
culating exposures on many path-dependent products whose value at the
future time may depend on either some event at an earlier time (such as
exercise of an option) or in some cases on the entire path leading to the fu-
ture date (such as the case of knock-in and knock-out barriers). For such
path-dependent instruments, we propose in this paper the notion of “con-
ditional valuation”, which is based on probabilistic conditional expecta-
tion techniques and develop value-at-future models for calculating the
exposure of several path-dependent derivative instruments.

2. Scenario Generation
The first step in calculating credit exposure is to generate potential market
scenarios (e.g., FX rates, equity prices, interest rates, etc.) at different times
in the future. One obvious choice is to use the same model for instrument
pricing and to generate the scenarios, but the evolution dynamics of this
type of models are often constrained by arbitrage arguments. In contrast,
the dynamics for risk measurement are usually built on a real measure
based on historical data and not necessarily constrained to a risk neutral
framework. For example, in a front-office pricing model, the interest rate
scenarios are usually generated by construction5 of zero rates or discount
factors using the market prices of cash, euros and swap rates. However, such
construction is often computationally expensive, as it requires the search
algorithm for the business day count library. Furthermore, the forward

rates implied from these scenarios can be nonsensical as a result of arbi-
trage-free constraints. 

In this paper, we assume without loss of generality the simple lognor-
mal model for underlying prices

S(t) = S0 exp
[(

µ − 1
2 σ 2

)
t + σ W (t)

]
(2.1) 

where W (t) is the Brownian motion, µ is the drift and σ is the volatility.
However, distinction must be made between scenario generation and in-
strument valuation for these parameters. When the model is used for
pricing or instrument valuation, we know that the volatility σ = σiv , i.e.,
the implied volatility for the option on underlying price, and the drift is
set under the risk-neutral measure to µ = r − d for stock or indices with
r = interest rate and d = dividend yield. On the other hand, when the
model is used for generating future scenarios for risk management, we
normally use the drift µ = µh and volatility σ = σh , which are usually
estimated from the historical data as follows:

σh =
√√√√1

T

T∑
t=1

(
ln

[
S(t)

S(t − 1)

]
− µh

)2

, µh = 1

T

T∑
t=1

ln

[
S(t)

S(t − 1)

]
(2.2)

and we then adjust the drift µ = µh + 1
2 σ 2 to compensate − 1

2 σ 2 term in
the model (2.1). 

There are two ways that we can generate the possible future values of
the market factors. The first is to simulate directly from time t = 0 to the
relevant simulation date t (i.e., Direct Jump to Simulation Date as shown
in Figure 2A

X(t) = X(0) exp[(µ − 1
2 σ 2)t + zσ

√
t] (2.3)

where z is a normal variant and X(t) represents the shocked market fac-
tor at time t. The other method is to generate a “path” of the market fac-
tors through time (i.e., Path-Dependent Simulation as shown in Figure 2B

X(ti+1) = X(ti) exp[(µ − 1
2 σ 2)(ti+1 − ti) + zσ

√
ti+1 − ti] (2.4)

where z is a standard normal variate and X(ti+1) represents the shocked
market factor at time ti+1 that connects from the particular scenario X(ti)

at previous time ti. Each simulation describes a possible trajectory from
time t = 0 to the longest simulation time t = T. 

Since continuous-time models are used for the market factor evolu-
tion (rather than simple discretization), the market factor distribution at

^
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Figure 1: Mark-to-Market and Value-at-Future in Exposure Modeling
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Figure 2: Two ways of generating market scenarios
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a given simulation date using either PDS or DJS will be indistinguishable
in the limit of large number of samples. Since we will be using condi-
tional valuation methods in this paper, what matters is the distribution
of the market factor scenarios at a simulation date rather than the path
it took to get there. 

3. The Brownian Bridge
The concept of conditional expectation can be illustrated by using the ex-
ample of a Brownian bridge. The Brownian bridge is a set of Brownian paths
W (t) that start from one point (i.e., the origin) at time 0 and end at another
point W (T) = w pre-specified at a future time T > 0 as illustrated below:

The question of interest is to determine the distribution of W (t) at
any time t ∈ (0, T) conditional on knowing the end point W (T) = w!
Mathematically, the density of a Brownian bridge6 can be explicitly de-
rived such that

f (W (t) = x|W (T) = w) = 1√
(2π)t(1 − t/T)

exp

[
− (x − wt/T)2

2t(1 − t/T)

]
(3.1)

where W (t) is a standard Brownian motion7. Compared to standard
Brownian motion, the Brownian Bridge possesses some unique proper-
ties. In particular, the conditional mean and variance of the Brownian
Bridge are given by

E[W (t) |W (T) ] = (t/T)W (T) (3.2)

Var[W (t) |W (T) ] = t(1 − t/T)

and for the geometric Brownian bridge,

E[exp{W (t)}|W (T)] = exp{ 1
2 t(1 − t/T) + (t/T)W (T)} (3.3)

Var[exp{W (t)}|W (T)] = exp{2t(1 − t/T) + 2(t/T)W (T)}

For exposure calculation, the conditional valuation is a probabilistic
technique to adjust the valuation models for instruments whose value at

the future date may depend on the scenario before that time. Such ap-
proach fits naturally in the value-at-future exposure framework, where
one can separate instrument valuation completely from the market risk
factor scenario generation. Furthermore, this approach provides a con-
sistent treatment across different types of instruments, which then en-
able us to aggregate the exposures between the instruments of different
types, such as swaps and swaptions. In the following sections, we will
demonstrate the powerful techniques of conditional valuation approach
in the exposure calculation for several well-known instrument types with
the path-dependent features.

4. Formulation of Conditional Valuation
We again emphasize that the need for conditional valuation stems from
the fact that we can only simulate future scenarios at discrete time inter-
vals because of limited computer resources. However, the value of a de-
rivative product at any of these dates may depend on the full path over
the continuum of dates prior to the simulation date. We provide in this
section the formulation of the conditional valuation approach for calcu-
lating credit exposures that are consistent across all derivative products,
path-dependent or not. For simplicity of exposition, we will assume in
this paper that the direct-jump to simulation date (DJS) approach as ex-
plained in section 2 is used to generate market scenarios.

The exposure calculation is performed on a discrete set of the future
times, which are called in this paper as the “simulation dates”. As de-
scribed in section 1, there are two steps in the calculation of future expo-
sure of a derivative instrument. First, the future scenarios of market
factors must be generated under the real measure (as opposed to the risk-
neutral measure) on the simulation dates. Second, one needs to adjust
the real measure to a risk-neutral measure when applying the valuation
functions to calculate the value of derivative contract for each of the mar-
ket scenarios on the simulation date. For this purpose, we first introduce
the notations used to describe the evolution of market risk factor and ex-
posure calculation:

• Discrete simulation dates: {tk = t1, t2, . . . , tN}
• Market risk factor scenarios: {X(tk) = X(t1), X(t2), . . . , X(tN)}
• The future values of the {V(tk) = V(t1), V(t2), . . . , V(tN)}

transaction:

Since the credit exposure of a derivative contract at a future time de-
pends on the expected value of the contract given the scenario of under-
lying market risk factors at that time, we need a valuation methodology
that can calculate the future value of derivative contract which may be
contingent on the scenarios of underlying market risk factors between
today and the future time. The scenarios can be generated from the
Monte-Carlo simulation of a risk factor evolution model in two different
ways: path-dependent scenarios and direct-jump scenarios, as described
in section 2. 

There are many situations where the future value of a given transac-
tion is not uniquely determined by the state of underlying risk factors at
the simulation date. For example, we consider a swap-settled swaption
(or a Bermudan in a general case) where the future value of such transac-
tion can be ambiguous on the simulation date past the expiry date of op-
tion, because we could either have a swap as the result of option exercised
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Figure 3: Graphical illustration of a Brownian bridge
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or nothing if the swaption expires worthless. Other examples include
barrier (i.e., knock-in or knock-out) and average options, where the payoff
is truly path-dependent in the sense that the future values of such op-
tions at the simulation date depend on the entire history of underlying
market factor. For path-dependent instruments, their values at the future
simulation date may thus depend on either the event occurring at a time
before the simulation date or the entire scenario path leading to the sim-
ulation date. Hence, the valuation at the future date can be formulated as
the conditional expectation 

V(tk, x) = E[f (tk, {X(t)}0≤t≤tk
) |X(tk) = x ] (4.1)

where the conditioning is on the state of market risk factor X(tk) = x, for
a particular scenario at tk and {X(t) : 0 ≤ t < tk} denotes the entire path of
risk factor evolution. When an instrument is not path-dependent, such as
in the case of swap, forward and cash-settled option, the conditional ex-
pectation in (4.1) above simply degenerates to 

V(tk, x) = f (tk, X(tk) = x) (4.2)

which is just a simple MtM valuation at the simulation date tk . 
In this paper, we refer to this type of valuation as the “conditional

value-at-future” or simply value-at-future (VaF) as described in section 1.
However, in general, VaF is not the MtM valuation at the future simula-
tion date. To illustrate the difference, we consider two special cases in the
formulation (4.1) where the valuation function is separable in the follow-
ing sense: 

f (tk, {X(t)}0≤t≤tk
) = g(tk, X(tk)) · h({X(t)}0≤t≤tk

) (4.3)

f (tk, {X(t)}0≤t≤tk
) = g(tk, X(tk)) + h({X(t)}0≤t≤tk

) (4.4)

In each of two cases, we can respectively rewrite the conditional expecta-
tion explicitly

V(tk, x) = g(tk, x) · E{h({X(t)}0≤t≤tk
) |X(tk) = x } (4.5)

V(tk, x) = g(tk, x) + E{h({X(t)}0≤t≤tk
) |X(tk) = x } (4.6)

where g(tk, x) is the mark-to-market valuation of such transaction at the
simulation date. As shown later in this paper, the barrier option is an ex-
ample of the case (4.3) where 

h({X(t)}0≤t≤tk
) = I{X(t)<H: 0≤t≤tk } (4.7)

is the indicator function of breaching the up barrier. The average option
is an example of the case (4.4) where

h({X(t)}0≤t≤tk
) =

k∑
i=0

X(ti)

(tk − t0)
(4.8)

is the average of the scenario history leading to tk . 
Finally, the formulation of conditional valuation in (4.1) provides the

consistency for transactions with and without path-dependence, and
thus makes it possible for netting and aggregation across multiple risk
factors. Such approach is relatively easy to implement, as it is feasible in

many cases to explicitly compute the conditional expectation for many
instruments such as the barrier option, average option, swaption and
variance swap. 

5. Barrier Option
The barrier options are typical examples of path-dependent options
where their payout at maturity is determined by the entire history of the
underlying asset prices. They are often embedded in the interest rate
products such as the knockout swap, knockout cap and floor, where the
swaps, caps or floors will cease to exist if the forward rate rises or falls
below a pre-specified level (i.e., the barrier).

The pricing of barrier options is well known, and their (risk-neutral)
values are given by

MtMbarrier (t) =
{

Et [max{0, S(T) − K} · I{SMax (t,T)<H} ], for up-out Call

Et [max{0, K − S(T)} · I{SMin (t,T)>L} ], for down-out Put
(5.1)

where SMax (t, T) = max{S(τ ), t < τ ≤ T} and SMin (t, T) = min{S(τ ), t < τ

≤ T}, Et denotes the expectation under the risk-neutral measure, H = the
up barrier and L = the down barrier. If the market risk factor S(t) is as-
sumed to follow a (risk-neutral) lognormal process,

S(t) = S0 exp[− 1
2 σ 2t + σ W̄ (t)] (5.2)

then the analytic solutions such as Black-Scholes type formula to (5.1) can
be found in Haug and Espen (1997) and Hull and John (2003). However,
our interest here is to calculate the exposures of these instruments at
some future simulation date.

For exposure calculation, we first specify the evolution of risk factor
in the actual measure

S(t) = S0 exp
[(

µ − 1
2 σ 2

)
t + σ W (t)

]
(5.3)

which contains a drift and the volatility that are different from the risk-
neutral process in (5.2). The drift, which represents the risk premium for
the future uncertainty, can be calibrated to the historical time series. 

For a fixed scenario S(tk) = x, we illustrate four types of paths in the
figure shown below: 

^
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• Path 1 did not pass through the fixed scenario at the simulation date
• Path 2 never breached the barrier before the maturity,
• Path 3 breached the barrier before the simulation date,
• Path 4 breached the barrier before the maturity but after the simu-

lation date.

Thus, the third path will affect the calculation of exposure at the sim-
ulation date since the crossing of barrier before the simulation date will
determine the existence or extinction of underlying option.

Since the digital options are simple cases of barrier options, we de-
scribe only the conditional valuation of barrier options, particularly the
up-out and down-out call options. The value-at-future calculation of such
barrier options are given by the conditional expectation

VaFuo(tk; x) = E[max{0, S(T) − K} · I{SMax (tk ,T)<H} · ISMax (0,tk )<H |S(tk) = x ]

= E[max{0, S(T) − K} · I{SMax (tk ,T)<H} ] × E[I{SMax (0,tk )<H}|S(tk) = x]

= MtMuo(tk; x) × Prob[SMax (0, tk) < H |S(tk) = x] (5.4)

for the up-out barrier options, and similarly we have

VaFdo(tk; x) = Et [max{0, S(T) − K} · I{SMin (tk ,T)>L} · I{Smin (0,tk )>L} |S(tk) = x ]

= E[max{0, S(T) − K} · I{SMin (tk ,T)>L} ] × E[I{SMin (0,tk )>L}|S(tk) = x]

= MtMdo(tk; x) × Prob[SMin (0, tk) > L |S(tk) = x] (5.5)

for the down-out barrier options. Thus, the VaF calculation is simply the
mark-to-market value at the fixed scenario S(tk) = x multiplied by the
conditional probability of crossing the barrier, which can be computed
using the so-called “reflection principle” of Brownian path as described
in Karatzas and Shreve (1991) such that

Prob[SMax (0, tk) < H |S(tk) = x ] = 1 − exp[2hk(xk − hk)], (5.6)

and

Prob[SMin (0, tk) > L |S(tk) = x ] = 1 − exp[2lk(xk − lk)], (5.7)

where xk = log[S(tk)/S0]/(σ
√

tk), hk = log(H/S0)/(σ
√

tk) and lk = log(L/S0)/

(σ
√

tk), note the above probabilities are well defined since lk ≤ xk ≤ hk .
Finally, we consider an example of an up-out barrier option with one-

year maturity and the barrier level at 10% above the ATM strike. Using
(5.4), we compute the exposure profiles at 95%, 50% and 5% confidence
levels respectively on different simulation dates over a one year period as
shown in the figure below. Note that the exposure profiles of the barrier
option are quite different compared to that of a standard option. The ex-
posure profile of an up-out barrier option exhibits a sharp convexity in
contrast to the concave profile of a vanilla option. The peaky shape of ex-
posure profile on an up-out barrier option is attributed to the negative
convexity that the option becomes more likely to be knocked out as the
underlying price reaches close to the barrier level. 

6. Asian Option
An Asian option is an option on the average of underlying prices or inter-
est rates taken at certain frequency (such daily or weekly) from the start

date to the maturity date. There are generally two types of averaging
methods: arithmetic average and geometric average. The arithmetic aver-
age is defined as

An =
n∑

i=1

S(ti)/n (6.1)

while the geometric average is defined as

Gn =
n∏

i=1

S(ti)
1/n (6.2)

where S(ti) is the price of underlying at reset time ti. The price of under-
lying asset is assumed to follow a lognormal process

S(t) = S0 · exp[(µλ − 1
2 σ 2)t + σW (t)] (6.3)

where σ is the volatility of underlying stock, µλ = r − d + λσ is the risk-
adjusted drift for a specified market price of risk λ. The geometric aver-
age, as a product of underlying prices, is lognormal since the underlying
price is lognormal at each reset time. However, the arithmetic average as
the sum of lognormal prices will not be lognormal in general. Nonetheless,
to handle the Asian feature, we approximate the arithmetic average with
a lognormal distribution with mean and variance chosen to match the
actual mean and variance. When average reset frequency is high such as
daily, the lognormal volatility of arithmetic average can be approximat-
ed by so-called the “

√
3-rule”. This approximation rule is derived in the

following:

Var[An ] = 1

n2
Var[nS(t0) + (n − 1)S(t1) + · · · + S(tn)]

= (T − t0)σ
2 (n − 1)2 + · · · + 22 + 12

n3

= (T − t0)σ
2 (n − 1)(2n − 1)

6n2

(6.4)

Annualizing by (T − t0) and taking the limit n → ∞, we obtain Var[An ]/
(T − t0) ≈ σ 2/3.
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In general, the mean and variance of arithmetic average can be calcu-
lated in the following

E[An ] = 1

n

n∑
i=1

F0(ti), Var[An ] = E[A2
n ] − E[An ]2 (6.5)

where F0(t) = S0 exp{(r − d)t} is the forward price at today for delivery at
the future date t. Furthermore, we define the variance of return on arith-
metic average 

σ 2
A

= 1

T

(
1 + Var(An)

(E[An ])2

)
(6.6)

The option on average price can generally be classified into two dif-
ferent types: average price option (APO) and average strike option (ASO).
The payoff on average price option is defined as

max{0, φ(An − K)}

while the payoff on average-strike option

max{0, φ(S(T) − An)}

where φ = +1 for a Call and φ = −1 for a Put. That is to say, the APO is an
option strike on a fixed price and the ASO is an option strike on the aver-
age price. 

For valuation of a European option on arithmetic average, we usually
approximate by a Black-Scholes function assuming a lognormal average
price:

MtM(t0) = E[max{0, φ(An − K)}] = φM · �(φd1) − φK · �(φd2) (6.7)

where M = E[An ], σA as calculated in (6.6), �(·) is cumulative normal dis-
tribution and 

d1 = ln(M/K) + 0.5σ 2
A

√
T

σA

√
T

, d2 = d1 − σA

√
T

At any future simulation date tk > t0, we denote 

A(t0, tk) =




1

nk

∑k
i=1 S(ti)

1

tk − t0

∫ tk

t0
S(t)dt

(6.8)

as the discrete or continuous average between t0 and tk respectively, and
similarly for A(tk, T) as the average between tk and T. Then the value-at-
future of average option is given by the conditional expectation

VaF(tk; S(tk)) = E[max{0, φ(A(t0, T) − K)}|S(tk)]

= E

[
max

{
0, φ

(
nk

n
A(t0, tk) + n − nk

n
A(tk, T) − K

)} ∣∣∣W (tk)

]
(6.9)

where the expectation is taken conditional on the price of underlying
stock S(tk) at simulation time. Since A(tk, T) is independent of W (tk), the
conditional expectation in (6.9) can be rewritten as

VaF(tk; S(tk)) = n − nk

n
E

[
E

(
max

{
0, φ(A(tk, T)

− n

n − nk

[
K − nk

n
A(t0, tk)

])}) ∣∣∣W (tk)

] (6.10)

There is no analytic solution for the conditional expectation, in general,
for arithmetic average option. However, we can find a good semi-analytic
approximation by assuming a lognormal distribution for the averages:

A(t0, tk; z) = exp{M(t0, tk) +
√

V(t0, tk) · z}

A(tk, T; x) = exp{M(tk, T) +
√

V(tk, T) · x}

where M is the mean, V is the variance of the average, x and z ∼ N(0,1)
with 

〈X, Z〉 = ρ(tk) = Corr[ln A(0, tk), ln A(tk, T))] (6.11)

The mean and variance can be computed once their 1st and 2nd mo-
ments are known

A = 2 ln(M1) − 1
2 ln(M2), V = ln(M2) − 2 ln(M1) (6.12)

For two moments over time interval [tk, T], we can compute in straight-
forward fashion

M1(tk, T; x) = S(tk)

n

n−nk∑
j=1

exp[µ · j · 	t] (6.13)

M2(tk, T; x) =
[

S(tk)

n

]2

·
n−nk∑
j=1

[
exp

{
(2µ + σ 2

iv)j

n

}

+2 ·
j−1∑
i=1

exp

{
µ(j + i)

n
+ σ 2

iv(j + 3i)

2n

}] (6.14)

However, the calculation of the two moments over the time interval
[t0, tk ] is quite complex, as the repeated use of the variance formula (3.3)
of the Brownian Bridge is required

M1(t0, tk; z) = 1

n + 1
E


 nk∑

j=1

S(tj)|S(tk)


 = 1

n + 1

nk∑
j=1

E
[
S(tj)|S(tk)

]

= S0

n + 1

[
1 + √

2π · exp

{
1

2

(
µ

√
tk

σh
+ z

)2
}

·
nk∑

j=1

ψ

(
µ

√
tk

σh
+ z − σhj	t√

tk

)
(6.15)

and
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M2(t0, tk; z) = 1

(n + 1)2
E




 nk∑

j=1

S(tj)




2

|S(tk)




= 1

(n + 1)2


 nk∑

j=1

E[S(tj)
2|S(tk)] + 2

j−1∑
i=1

E[S(tj)S(ti)|S(tk)]




(6.16)

= S2
0

(n + 1)2




1 + √
2π · exp{((µ + 0.5σ 2

h )tk + zσh
√

tk)
2/(2σ 2

h tk)}

·∑nk

j=1




ψ

(
(µ + 0.5σ 2

h )tk + zσh
√

tk − 2σ 2
h j	t

σh
√

tk

)

+2 ·∑j−1
i=1 exp{i	tσ 2

h }

·ψ
(

µtk + zσh
√

tk − 2σ 2
h (j + i)	t

σh
√

tk

)







Finally, we apply the Black-Scholes option formula to the uncondi-
tional expectation in (6.10) 

VaF(tk; S(tk)) = n − nk

n

∫ Kk

0
ψ(z)dz·

BS[A(tk, T; z), Kk(z), T − tk,
√

(1 − ρ2(tk))V(tk, T; x), φ]

+ φ

∫ ∞

Kk

(
nk

n
A(t0, tk; z) + n − nk

n
A(tk, T; z) − K

)
ψ(z)dz

(6.17)

and

∫ ∞

Kk

(
nk

n
A(t0, tk; z) + n − nk

n
A(tk, T; x) − K

)
ψ(z)dz

=
[

nk

n
�

(
−Kk +

√
V(t0, tk; z)

)
+ n − nk

n
�

(
−Kk + ρ(tk)

√
V(t0, tk; z)

)]

− K�(−Kk)

(6.18)

where ψ is the standard normal density function, � is the cumulative
distribution function and BS[X, K, T, σ, φ] is the standard Black-Scholes
option pricing function,

Kk = [ln(K · N/nk) − M(t0, tk)]/
√

V(t0, tk)

K(tk, Z) = N

N − nk

[
K − nk

N
exp

{
M(t0, tk) +

√
V(t0, tk) · Z

}]
A(tk, T; Z) = exp

{
M(tk, T) + 1

2 V(tk, T)(1 − ρ2(tk)) +
√

V(tk, T) · Z · ρ(tk)

}

The above valuation needs to perform an integration of the Black-
Scholes function with a standard normal density function, which can
be calculated using a simple numerical integration. As an example,
we compute the exposure profiles on a 1.25-year average price option
with weekly averaging frequency and a fixed strike set equal to the
spot price. Compared with a standard ATM option, the average option
has a lower peak exposure and the exposure profile of such option ex-
hibits a humped shape in the rising price scenarios as shown in Figure
below.

7. Swap-Settled Swaption 
An interest rate swaption is an option to enter a swap. Depending on the
swap being a payer or receiver, such option is usually called right-to-pay
(RTP) or right-to-receive (RTR) swaption. In contrast to regular swaptions
where the option will be cash-settled at the expiration date, a swap-set-
tled swaption will settle into its underlying swap if the option is exer-
cised at the expiration of the option.

For credit exposure, this difference is very crucial as the future exposure
on a cash-settled swaption stops right before the expiry while the future ex-
posure on a swap-settled swaption can potentially continue well beyond the
expiry of the option into the remaining life of underlying swap. 

The payout at option expiration date is defined as

MtMswptn (Te) = max{0, φ · Swap(Te)} (7.1)

where

Swap(Te) =
(

N∑
i=1

bidi

)
φ[F(Te, Ti) − K]. (7.2)

where K is the fixed rate, F(Te, Ti) is the forward rate reset at ith swap pe-
riod, φ = 1 for a call option or RTP swaption and φ = 1 for a put option
or RTR swaption. To price a swaption (both cash-settled and swap-settled),
Black’s formula is usually applied to the forward swap rate of the under-
lying swap in practice, i.e.,

MtMswptn (t) =
(

N∑
i=1

bidi

)
· ES{max[0, φS(Te) − φK]}

=
(

N∑
i=1

bidi

)
· BS(S0, K, Te − t, σS, φ)

(7.3)

where N is the number of swap periods, bi is the day-count fraction and di

is the discount factor. Here, σS is the implied volatility and ES denotes the
expectation under the forward swap measure as explained in Hull [5],
such that ES [S(Te)] = S0 at expiry time Te and the swap rate S(t) follows a
lognormal process under the forward measure,

S(t) = S0 exp[− 1
2 σ 2

S t + σSW̄ (t)]. (7.4)
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Figure 6: Exposure Profile for Asian Option vs. Standard Option



Wilmott magazine 91

where z∗(Te, tk) = {ln[S0/K] − (Te/tk) ln[S(tk)/S0]}
σ

√
tk(1 − Te/tk)

, using the property of
Brownian bridge (3.3).

Hence, the value-at-future after the expiration date is the product of
the MtM value of remaining swap and the conditional probability of op-
tion exercise at expiry.

As an example, we consider both the cash-settled and swap-settled
RTP swaption striked at the money with 1-year option to enter into a 5-
year payer swap on USD 100m notional. The figures above compare the
exposure profiles between these two swaptions. The cash-settled swap-
tion reaches the peak exposure as expected at the option expiry date and
the exposure does not extend beyond the expiration date, while the ex-
posure of a swap-settled swaption goes beyond the option expiry and ex-
tends to the final maturity date of underlying swap and it reaches the
peak exposure after the expiry date approximately at 3rd of underlying
swap life.

8. Conclusion
The accurate calculation of exposure is an essential component in man-
aging credit risk with the trading counterparties. In this paper, we have
presented a technique using conditional expectation valuation to im-
prove the accuracy of simulated exposures for path-dependent products.
Since a typical counterparty portfolio generally consists of many types of
instruments as well as a variety of market factors affecting the values of
these instruments, the simulation approach as described in Duffie and
Canabarro (2004) is usually employed to calculate exposure across the fu-
ture time horizons, usually up to the longest maturity in the portfolio. 

In the simulation approach, each transaction is revalued at future
times using simulated future scenarios of market factors. However, simu-
lation and revaluation consumes so much computer resources that cer-
tain simplifications are necessary in order for a bank to have its daily
exposure report delivered to its users in a reasonable amount of time.
One simplification that is mentioned in this paper is to have discrete sets
of simulation dates, usually with increasing time intervals for the longer
maturities. However, this simplification creates some difficulties in valu-
ing a path-dependent instrument at a future simulation date since we do
not have the continuum of the evolution of market factors up to that
date. Examples are given in this paper of path-dependent instruments
that depend on the history of a market factor leading up to its value at a

^
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For exposure calculation, we choose the swap rate as the risk factor
and model its evolution under the actual measure as

S(t) = S0 exp
[(

µ − 1
2 σ 2

)
t + σW (t)

]
(7.5)

for some drift µ and volatility σ that are calibrated to the historical time
series. For any future time before the expiry Te, the exposure is simply
given by the valuation formula (7.3).

For swap-settled swaptions, note that when the simulation date tk is
past the expiry Te, we face an ambivalent situation whether or not to cal-
culate the exposure on an underlying swap since we are not sure if the
swaption was exercised earlier. To illustrate this, consider two paths lead-
ing to the fixed scenario as in Figure 7. Path 1 (solid line) implies an option
exercise into the underlying swap since the swap rate at expiry Te is above
the strike rate. However, Path 2 (dotted line) implies that the option ex-
pires worthless. Therefore, the calculation of the exposure at time tk > Te

should include the probability of option exercise.
Thus, the value-at-future of such swaption is given by the conditional

expectation 

VaFswptn (tk) =
(

N∑
i=1

bidi

)
· ES{Max[0, φS(Te) − φK] |S(tk) }

=
(

N∑
i=1

bidi

)
· φ[S(tk) − K] × Prob{φS(Te) > φK|S(tk)}

(7.6)

for the future time tk > Te . The conditional probability can be computed
by applying the Brownian Bridge to the swap rate evolution up to the
fixed scenario S(tk). The risk factor evolution after the simulation date tk

needs to be adjusted back to the risk-neutral process (7.4) for valuation.
For the fixed swap rate scenario, the swap rate at expiry Te can be ex-
pressed in term of a Brownian bridge such that

S(tk) = S(Te) · exp[(µ − 1
2 σ 2)(tk − Te) + z · σ

√
tk − Te ]

under the actual measure. This enables us to compute the conditional
probability of option exercise at the expiration time

Prob{φS(Te) > φK|S(tk)} = 1 − �[φz∗(Te, tk)] (7.7)
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Figure 7: Option Expiries in a Swap-Settled Swaption
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Figure 8: Exposure Profiles of Cash-Settled and Swap-Settled Swaptions



TECHNICAL ARTICLE 4

W

given simulation date. Front-office pricing models are clearly inadequate
to calculate the value-at-future of a path-dependent instrument since
these models assume that no previous contingent event has taken place
prior to the valuation date. In this paper we have presented a methodol-
ogy to account for the possibilities of particular prior events that may af-
fect the exposure, conditional on the simulated value of the relevant
market factor at a given simulation date. Furthermore, using the proper-
ties of the Brownian Bridge, we have derived analytic expressions to cal-
culate the exposure or value-at-future on a number of path-dependent
instruments such as barrier options, average options, and swap-settled
swaptions.

FOOTNOTES & REFERENCES

1. The Expected Exposure (EE), as defined in Basel (2005), is the mean of the distribution
of exposures at any particular future date before the longest-maturity transaction in the
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of the individual expected exposures estimated for given forecast horizons.
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originally introduced by Ron Dembo, et al, in their 2000 paper (2000) for Algorithmics risk
management framework.
3. Duffie and Canabarro (2004) provided a description of Monte-Carlo simulation ap-
proach on modeling the derivatives exposure.

4. Rebonato (2003) provided an excellent overview of interest rate term structure models.
5. The construction of zero curves is commonly referred as curve construction, which is a
necessary step in pricing most interest rate instruments.
6. Brownian Bridge and its density can be easily extended to the case of multi-dimensional
Brownian process.
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measure and W(t) for risk-neutral measure.
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