
A Case Study on Asset Allocation 
in a Markowitz World

W ith a global wealth 
of 256 trillion USD 
in 2016 (source: [3]) 
and with an ongoing 
regime of extremely 

low interest rates, the task of efficient 
asset allocation is a challenging one. 
In this article we move within the 
Markowitz world [4], focusing on the 
multiperiod case. While it is common 
sense (although sometimes falsified) 
that diversification should reduce risk 
with the desired return remaining 
unchanged, in our examples we want-
ed to quantify the volume of proposed 
reallocation under various trading 
strategies in the multiperiod case.

Assumptions on the 
tradable assets and on 
the trading restrictions
We assume that all tradable assets are 
equities, and that their joint move-
ment is a multidimensional geometric 
Brownian motion, leading to a multidi-
mensional log-normal distribution. We 
assume that no dividends are paid (or, 
alternatively, dividends are immediately 
reinvested in the same company).

At time t, let the investor possess 

a certain capital Kt that should be 
allocated to a pool of  N assets in an 
efficient way under the following 
restrictions:

•  All assets are equity shares. There 
is no risk-free investment available 
(at least not within the capital Kt).

•  The entirety of the capital has to 
be allocated. This means that the 
weights of the different assets with-
in the portfolio have to sum up to 1. 
In one of the example cases, short 
selling will be allowed. In such a 
case, if the investor short sells equi-
ties for 80 percent of the capital, 
she has to own (long) assets for 180 
percent of the capital.

•  Linear inequality constraints are 
allowed. Thus, the investor could 
restrict herself so that the weight of 
every asset should lie between, say, 
0 and 10 percent, or the amount 
of Swiss equity should be below 
20 percent, or the finance sector 
should have at least 15 percent.

Data used and  
benchmark
We used the time series of the N = 50 
companies with the largest market 
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capitalization on March 31, 2015, 
as reported by the Financial Times 
Global 500.1 For these shares, we used 
the time series of closing prices for the 
three years between 2013 and 2015 
(the 2013 data were used for estima-
tion only). All stock quotes (different 
currencies) were converted to EUR. 
Assume that on January 1, 2014, the 
investor starts with 1 million EUR and 
allocates 2 percent of the then available 
capital to each of the 50 stocks at every 
trading day. Without transaction costs, 
the portfolio value would develop as 
shown in Figure 1.

In this benchmark example, the 
final portfolio value was 1.52 million 
EUR with a realized annualized vol-
atility of 15.2 percent. To achieve the 
reallocation on each of the 504 trading 
days, the buying and selling volume 
(double counting the trading, leading 
to equal proportions again) was 7.289 

million EUR. No transaction costs 
were taken into account.

In August 2015, the China shock2 
 led to a massive rumble in the finan-
cial markets. This can be clearly 
observed in the drop after day 400.

Variance, covariance, 
and return estimates 
To apply a Markowitz framework, we 
need estimates for the returns and for 
the variance–covariance matrix. In 
this article, at every business day, we 
use a moving window of 252 business 
days, without fading memory, to obtain 
a very simple estimate. Although the 
variance–covariance matrix obtained 
by this procedure is quite robust in the 
course of time (there is only one day 
dropping out and one new one coming 
in), this is not necessarily the case for 
the portfolio weights, as we will see in 
the sequel.
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A long-only portfolio 
with minimal Markowitz 
risk
The first trading strategy we take into 
account is the following one: on every 
business day, the investor reallocates 
her portfolio in such a way that the 
estimated variance of the portfolio 
(based on the variance–covariance as 
above) is minimized. There is no short 
selling allowed, and all capital must be 
spent in equity. 

This is a quadratic minimization 
problem with linear inequality con-

strains [1, 2], which is solved by a pro-
prietary modification of the interior 
point algorithm [5]; see also [6, 7].

The final capital in the portfolio 
of Figure 2 was 1.41 million EUR, 
with an annualized realized volatility 
of 11.85 percent. To achieve this, a 
volume of 30.34 million EUR (double 
counting) had to be traded.

Can short selling reduce 
risk?
Can this portfolio volatility be 
decreased further by allowing 

short selling (and still have full alloca-
tion)? As we have a quadratic objective 
function with positive eigenvalues 
of the Hessian, the portfolio weights 
(either positive or negative) cannot 
grow beyond all limits. Therefore, the 
only constraint that has to be satisfied 
is that the “sum of weights equals one,” 
and there are no inequality constraints. 

Indeed, it works out (see Figure 3). 
The final value of 1.4 million EUR is 
obtained with an annualized realized 
volatility of 9.97 percent. However, the 
trading volume was 122.93 million EUR.  

High-risk regimes
What happens when we are ready to 
take higher risk? Let us consider two 
cases:

(a)  Put all eggs into one basket only 
(i.e., invest the total of capital 
in the equity from which you 
expect – based on historical 
estimates – the highest return). 
See Figure 4.

(b)  Similar to (a), but with five bas-
kets: allocate 20 percent of capi-
tal to the five candidates that are 
expected to perform best (“per-

wilmott magazine  9

UnRisk

Figure 1: Benchmark portfolio (2 percent of capital in each asset): 
x-axis, number of trading day; y-axis, portfolio value

Figure 3: short selling allowed, full allocation, minimized risk

Figure 2: Long-only portfolio, minimal risk

Figure 4: invest in the best-performing equity
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Footnotes
1. These were: Apple, ExxonMobile, 
BerkshireHathaway, Google, Microsoft, 
Petrochina, WellsFargo, Johnson & 
Johnson, Industrial and Commercial 
Bank of China, Novartis, China Mobile, 
Walmart Stores, General Electric, 
Nestlé, Toyota, Roche, JPMorganChase, 
Procter & Gamble, Samsung Electronics, 
Pfizer, China Construction Bank, 
Verizon Communications, Chevron, 
Bank of China, AnheuserBuschInBev, 
RoyalDutchShell, Agricultural Bank 
of China, Oracle, Facebook, Walt 
Disney, Tencent, Coca-Cola, Amazon, 
AT&T, HSBC, Merck, Bank of America, 
IBM, ChinaLifeInsurance, Citigroup, 
Homedepot, Intel, Gileadsciences, 
Comcast, Pepsico, Ciscosystems, Sanofi, 
Visa, Volkswagen, and Bayer.
2. See, e.g., www.theguardian.com/
business/2015/aug/12/china-yuan-
slips-again-after-devaluation.

form” again in the “high-re-
turn” sense). See Figure 5.

In practice, these strategies were 
implemented in a slightly different 
way, yielding the same outcome: if 
we take the portfolio with the highest 
expected return among all portfolios 
with equity weights between 0 and 
1, then it is easy to prove that a single 
asset allocation (the one with the 
 highest estimated return) is the solu-
tion. Similarly, when restricting to 
weights between 0 and 20 percent, the 
highest expected return is a five-equity 
strategy.

These strategies would have led to 

higher returns, to higher volatilities, 
and (by chance, not necessarily) to a 
higher trading volume. In Figure 4: 
final value = 6.31 million EUR, real-
ized volatility = 39.99%, trading vol-
ume = 235.56 million EUR. In Figure 
5: final value = 3.01 million EUR, 
realized volatility = 30.00%, trading 
volume = 129.27 million EUR.   

Reducing the trading 
volume
It seems that the daily reallocation 
generates a lot of churning. Let us have 
a closer look at the asset allocation 
which led to the wealth development 

in Figure 5. The asset allocation is indi-
cated in Figure 6. 

It seems that the year 2014 (the first 
250 days of Figure 6) was a good time 
for trend followers, with quite steady 
peak performers. However, in 2015 the 
pattern gets more rugged, and every 
time one stock is replaced by anoth-
er, a trading volume of 40 percent is 
accounted for (20 percent sell, 20 per-
cent buy). This might explain the high 
transaction volume.  

outlook
We have presented a case study of dif-
ferent asset-allocation schemes within 
a Markowitz world. Without taking 
into account transaction costs, the 
results are quite promising. In order to 
reduce the trading volume, stabiliza-
tion procedures have to be applied. We 
can think of less frequent reallocation 
(weekly?), of regularizing the vari-
ance–covariance matrix (shifting the 
eigenvalues), or of procedures similar 
to those in [8] to obtain lower costs. 
This should be the topic of further 
investigations.

Figure 5: invest in the five best-performing equities

Figure 6: Asset allocation in the course of time; five stocks picked
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